Chapter 5 Gases. Chapter 5: Phenomena. Properties of Gases. Properties of Gases. Pressure. Pressure

Similar documents
Chapter 5: Phenomena. Chapter 5: Gases. Molar Mass. Volume (L) Amount (mol) Pressure (atm) Temperature ( C) Odor

Chapter 10 Notes: Gases

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

The Kinetic-Molecular Theory of Gases

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 10. Gases. The Gas Laws

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Chapter 5. The Gas Laws

Although different gasses may differ widely in their chemical properties, they share many physical properties

Chapter 5 The Gaseous State

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings

Part One: The Gas Laws. gases (low density, easy to compress)

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

AP Chemistry Ch 5 Gases

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 5 Gases and the Kinetic-Molecular Theory

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

The Kinetic-Molecular Theory of Gases

Slide 1 / A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m 2 A 55 B 0.55 C 5.5 D 1.8 E 18

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

CHEMISTRY XL-14A GASES. August 6, 2011 Robert Iafe

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

What we will learn about now

AP Chemistry Unit 5 - Gases

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Gases and the Kinetic Molecular Theory

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy

Unit 8 Kinetic Theory of Gases. Chapter 13-14

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

Chapter 6: The States of Matter

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law.

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

Gases: Their Properties & Behavior. Chapter 09 Slide 1

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Chapter 5 The Gaseous State

Chapter 10. Chapter 10 Gases

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter

Fig Note the three different types of systems based on the type of boundary between system and surroundings.

Gases. Pressure is formally defined as the force exerted on a surface per unit area:

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere

Forces between atoms/molecules

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution

Comparison of Solids, Liquids, and Gases

UNIT 10.

CHEMISTRY Matter and Change. Chapter 13: Gases

Mixture of gases. Mix 5 moles of CO 2 V = 40L 2 moles of N 2 T = 0 C 1 mole of Cl 2 What is P? Mary J. Bojan Chem 110

Properties of Gases. Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

General Properties of Gases

Gases and Kinetic Theory

Substances that Exist as Gases

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J.

Gases and Kinetic Molecular Theory

Test Bank for Chemistry 9th Edition by Zumdahl

Chap. 5 GASES & KINETIC- MOLECULAR THEORY

States of Matter Lesson 3.6 CHEMISTRY 2 HONORS. Jeff Venables Northwestern High School

Chapter 5. Gases and the Kinetic-Molecular Theory

Chapter 10. Gases. Characteristics of Gases. Units of Pressure. Pressure. Manometer. Units of Pressure 27/07/2014 P = F A

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 10. Gases. Lecture Outline Characteristics of Gases 1, 10.2 Pressure. Atmospheric Pressure and the Barometer 3, 4, 5, 6,

Lecture 2 PROPERTIES OF GASES

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry

where k is a constant for the gas in a closed system at a temperature in a closed system, as k would be the same.

1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of. 2) A gas at a pressure of 325 torr exerts a force of N on an area of

Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of. 2 NaN 3 ---> > 2 Na + 3 N 2

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Centimeters of mercury

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry

School of Chemical & Biological Engineering, Konkuk University

The Gaseous State. Definition

CHEMISTRY II B. Chapter 10 & Chapter 12. Gases


IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass

Transcription:

Chapter 5: Phenomena Phenomena: To determine the properties of gases scientists recorded various observations/measurements about different gases. Analyze the table below looking for patterns between the gases. Use these patterns to fill in the information for the mystery gas. Gas Color Amount (mol) Volume (L) Molar Mass Pressure (atm) Odor Temperature ( C) Cl 2 Yellow 1.0 24.4 70.906 1.0 Bleach Like 25 C Cl 2 Yellow 1.0 48.8 70.906 0.5 Bleach Like 25 C CH 4 Colorless 0.5 12.2 16.0426 1.0 Odorless 25 C CH 4 Colorless 3.0 12.2 16.0426 6.0 Odorless 25 C H 3 Colorless 1.0 24.4 17.0307 1.0 Feline Urine 25 C H 3 Colorless 1.0 48.8 17.0307 0.5 Feline Urine 25 C O 2 Brown 0.5 12.2 46.005 1.0 Pungent 25 C O 2 Brown 1.5 36.6 46.005 1.0 Pungent 25 C Xe Colorless 1.0 24.4 131.29 1.0 Odorless 25 C Xe Colorless 0.37 36.6 131.29 1.0 Odorless 919 C Mystery 1.0 24.4 1.0 25 C Mystery 12.2 6.0 25 C Big Idea: The pressure, volume, number of moles, and temperature are needed to classify a gas. Knowing 3 of these quantities allows us to calculate the forth, using the ideal gas law. Generally these properties are independent of gas type. The ideal gas laws can be explained using a model of a gas in which the molecules are in ceaseless random motion and widely spread out. 2 Chapter 5 Gases Properties of Gases Pressure Other Equations of States Gas Stoichiometry Dalton s Law of Partial Pressures The Kinetic Model of Gases Effusion and Diffusion Properties of Gases Properties of Gases Eleven elements are gases under standard conditions. In addition, many compounds with low molar masses (HCl, CH 4, C 3 H 8 ) are also gases under standard conditions. Bulk Matter: Forms of matter consisting of large numbers of molecules. The properties of a gas sample emerge from the collective behavior of vast numbers of its individual particles. Properties of Gases Compressible. Fill up the space that is available (this implies that the molecules are moving quickly in a chaotic motion). ote: All elements that are gases at room temperature temperatures are diatomic with the exception of the 6 noble gases, which are monatomic. 3 4 Pressure Pressure A barometer is used to measure the pressure of the atmosphere. The pressure of the atmosphere is balanced by the pressure exerted by the column of mercury. The height of the column is proportional to the atmospheric pressure. Therefore, by measuring the height of the column, we can monitor the pressure of the atmosphere. P=dhg (a) An open-tube manometer. The pressure inside the apparatus to which the narrow horizontal tube is connected pushes against the external pressure. In this instance, the pressure inside the system is lower than the atmospheric pressure by an amount proportional to the difference in heights of the liquid in the two arms. (b) The pressure in the adjoining apparatus is proportional to the difference in heights of the liquid in the two arms. The space inside the closed end is a vacuum. 5 6 1

Pressure Common Units of Pressure Units Conversion to atm Temperature and Moles Constant Boyle s Law: For a fixed amount of gas under constant temperature, the volume is inversely proportional to pressure. Pa* mm Hg Torr psi in Hg 101325 Pa = 1 atm 760 mm Hg = 1 atm 760 torr = 1 atm 14.7 psi = 1 atm 29.92 in Hg = 1 atm Mathematically 1 *The SI derived unit of pressure is Pa. ote: A change that occurs at constant temperature is referred to as an isothermal change. 7 8 Pressure and Moles Constant Charles s Law: For a fixed amount of gas under constant pressure, the volume varies linearly with the temperature. Mathematically Temperature Conversions Units Conversion to Kelvin Kelvin (K)* Celsius ( C) 273.15 Fahrenheit ( F) 32 273.15 *SI unit ote: Temperature conversions involve both multiplication/division and addition/subtraction, therefore, be very careful when using a unit other than Kelvin. ote: A change that occurs at constant pressure is referred to as an isobaric change. 9 10 Implications of Charles s Law A balloon containing 1.0 L of air at 25 C is put in liquid nitrogen which is at a temperature of -196 C. What is the final volume of the balloon? 11 12 2

Pressure and Temperature Constant Avogadro s Law: At constant pressure and temperature, the volume of a gas varies linearly with the number of moles. Mathematically PV=nRT Boyle s, Charles's, and Avogadro s Law are just special cases of ideal gas law Boyle s Law Charles s Law Avogadro s Law 13 14 How do they get R? Three pistons all with different gases. (P = 1 atm, T = 298.15 K, n = 1 mol) Student Question What is the volume (in L) occupied by 35.2 g of nitrogen gas at 35 C and 0.975 atm? Helpful Information: 14.01 He 2 O 2 = = =24.5L R= Ideal Gas Constant 0.08206 (P(atm),V(L), n(mol) and T(K)) 8.3145 (P(Pa),V(m3 ), n(mol) and T(K)) a) 26.8 L b) 18.7 L c) 21.8 L d) 32.6 L e) one of the above 15 16 Other Equations of State Equation of State: A mathematical expression relating the pressure, volume, temperature, and amount of substance present in a sample. ote: The ideal gas law is an example of an equation of state. Limiting Law: A law that is accurately obeyed only at the limit of a property, which is when a property (the pressure of a gas, for example) is made very small. ote: The ideal gas law is a limiting law. 17 18 3

Other Equations of State Other Equations of State A common procedure in chemistry to improve the ideal gas law is to suppose that the terms on the right-hand side of an equation (such as nrt in PV=nRT of the ideal gas law) are just the leading (and predominant) term of a more complicated expression. Virial Equation: 1 B,C, are called the second virial coefficient, third virial coefficient and so on. The virial coefficients are found by fitting experimental data and are temperature dependent. Parameter a corrects for attractions (intermolecular forces) between particles; particles with strong intermolecular forces (large molecules with many electrons)have larger a values. Parameter b corrects for the size of the particle; it can be thought of as representing the volume of an individual molecule. 19 20 Gas a b He 0.034 0.0237 e 0.211 0.0171 Ar 1.35 0.0322 Kr 2.32 0.0398 Xe 4.19 0.0511 H 2 0.244 0.0266 2 1.39 0.0391 O 2 1.36 0.0318 Cl 2 6.49 0.0562 CO 2 3.59 0.0427 CH 4 2.25 0.0428 Dalton s Law of Partial Pressure Dalton wondered if he had a certain amount of oxygen in a container that has a pressure of 0.60 atm and he had another container of the same size of nitrogen that had a pressure of 0.40 atm, if he combined the two gases in a third container of the same size, what the pressure would be. He found that the pressure would be 1.00 atm. Dalton s Law of Partial Pressure Partial Pressure (P x ): The pressure that a gas (X) in a mixture would exert if it alone occupied the container. Law of Partial Pressures: The total pressure of gases is the sum of the partial pressures of its components. Mole Fraction (χ): The amount of particles (molecules, atoms, or ions) of a substance in a mixture expressed as a fraction of the total amount of particles in the mixture. 21 22 Assumptions Made for the Kinetic Model of Gases 1) The particles are so small compared with the distances between them that the volume of the individual particles can be assumed to be negligible (zero). 2) The particles are in constant motion. The collisions of the particles with the walls of the container are the cause of the pressure exerted by the gas. 3) The particles are assumed to exert no forces on each other; they are assumed to neither attract nor repel each other. 4) The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas. Purpose: Want to show that ideal gas law and kinetic model of gases are consistent with each other PV n T Calculate the Pressure in a Rectangular Prism (Kinetic Model) 1) P F= Force, A=Area 2 z y x A x = Area of a side on x F A y = Area of a side on y (ewton's second law) A z = Area of a side on z p=momentum ( u=velocity) 23 24 4

Goal: Calculate Change in Momentum 3) Calculate of Δp of 1 molecule hitting 1 of the walls. p before hits wall p mu p after hits wall p m u Change in p p m u mu 2mu 4) Calculate p for multiple molecules (traveling at the same speed) p p 2mu col = number of molecules that collide with wall Goal: Calculate Change in Momentum 5) How many molecules collide with wall in time period Δt? Kinetic Model: particles in random motion, therefore, roughly evenly distributed pos = number of molecules that could hit wall V pos = the volume that those particles are in V tot = total volume of rectangular prism tot = total number of molecules ote: V tot is the same volume used in the ideal gas law but we need to find expressions for the rest of the variables. 25 26 Goal: Calculate Change in Momentum 6) What is the volume in which particles have the potential of hitting the wall (V pos ) x u t x max = max distance away from wall and still collide with side V A x A u t Goal: Calculate Change in Momentum 8) Plug col into Δp tot p 2mu A u t 2V 2mu A mu t V Goal: Calculate Force 9) Calculate force on 1 side of rectangle prism 7) Plug expression into pos F A mu t V A mu t V Problem: Half of the molecules in that area are ote: When we originally calculated the change in momentum it was with respect to moving toward the wall and half are moving away. the molecules. When we calculate the force, we need the change in momentum with respect to the wall, therefore, the sign must be flipped. 27 28 Goal: Calculate Pressure 10) Calculate pressure on 1 side of the rectangular prism A mu P F A V A mu V Goal: Calculate Pressure 12) Calculate P tot ote: The pressure inside the container is constant. P P mu V 11) Remove requirement that all molecules are traveling at the same speed. P mu V ote: A line over a variable represents the average value. 12) Change to overall velocity instead of velocity in x u u u 3u u u u P mu V m V 29 30 5

Goal: Calculate Pressure 14) Change to number of moles A = Avogadro s Constant 3 3 3 Goal: Calculate Pressure 15) Kinetic Model: The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas. 1 2 3 ote: The variables boxed in green are proportional to the kinetic energy and the variables boxed in red are constants. Kinetic Theory 31 32 Maxwell Distribution ( ) Δ = umber of molecules with a speeds in the narrow range between u and u+ ΔU 4 f(u) = Maxwell distribution of speeds James Clerk Maxwell 1831-1879 Wrote the equations that unified electricity, magnetism, and optics. The heavier the atom, the slower the average speed and the closer the speeds are to the average speed. As the temperature increases, the average speed increases and the spread of speeds widens. 33 34 Most Probable Velocity (u mp ) 0solve for u Average Velocity (u ave ) Root Mean Square Velocity (u rms ) Student Question Consider three 1.0-L flasks at STP. Flask A contains He gas, flask B contains O 2 gas, and flask C contains H 2 gas. In which flask do the gas particles have the lowest average kinetic energy? a) Flask A b) Flask B c) Flask C d) All are the same. 35 36 6

Effusion and Diffusion Effusion and Diffusion Diffusion: The spreading of one substance through another substance. Effusion: The escape of a substance (particularly a gas) through a small hole. Determining the relationship between rates of effusion of different substances. 1 1 Divide the two quantities by each other. Graham s Law of Effusion: At constant temperature, the rate of effusion of a gas is inversely proportional to the square root of its molar mass. ote: This law was determined experimentally. 1 1 ote: r 37 38 Effusion and Diffusion Student Question A sample of an unknown gas effuses in 8.2 minutes. An equal volume of krypton in the same apparatus at the same temperature and pressure effuses in 4.0 minutes. What is the likely identity of the gas? Helpful Information: 83.80, 39.95, 352.03, 20.18, and 159.80 Effusion and Diffusion H 3 (g) +HCl(g) H 4 Cl(s) a) UF 6 b) Br 2 c) Ar d) e e) one of the Above otice that the ammonium chloride initially forms closer to the end with HCl. 39 40 Take Away From Chapter 5 Take Away From Chapter 5 41 Big Idea: The pressure, volume, number of moles, and temperature are needed to classify a gas. Knowing 3 of these quantities allows us to calculate the forth by using the ideal gas law. Generally these properties are independent of gas type. The ideal gas law can be explained using a model of a gas in which the molecules are in ceaseless random motion and widely spread out. Properties of Gases Pressure (22) Know how to convert between different pressure units. Know the conditions of STP (1 atm and 0 C) and SATP (1 atm and 25 C). umbers correspond to end of chapter questions. 42 Know how to use : Boyle s Law 1 1 2 2 Charles's Law (41) Avogadro s Law (42) Ideal gas Law (11,33,34,36,37,40,43,55,56) Know the condition in which the ideal gas law is a good approximation. (93) Other Equations of State Know the advantages and disadvantages of the Virial equation. Know how to use the Van der Waal equation and what the Van der Waal constants correct for. (91,92) Gas Stoichiometry (8) Be able to use the gas laws to perform stoichiometry problems. (60,62,65,66,73,119) umbers correspond to end of chapter questions. 7

Take Away From Chapter 5 Dalton s Law of Partial Pressure Be able to calculate the partial pressures of gases. (29,46,49,127) χ Know what assumptions are made for kinetic model of gases. Know the relationship between kinetic energy, temperature, and velocity.(79,80) (81) Know how the shape of the Maxwell distribution of speeds changes with mass and temperature. (94) Know the difference and how to calculate u rms, u mp, and u ave. (82,83,86,99) Take Away From Chapter 5 Effusion and Diffusion Know the difference between effusion and diffusion Be able to use the effusion equation: (89,90) The time equation only works if the number of particles that effused are the same Be able to use the diffusion equation: 43 umbers correspond to end of chapter questions. 44 umbers correspond to end of chapter questions. 8