Instructor: Marios M. Fyrillas HOMEWORK ASSIGNMENT ON INTERPOLATION

Similar documents
1 Linear Least Squares

Calculus 2: Integration. Differentiation. Integration

Orthogonal Polynomials

Best Approximation in the 2-norm

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

NUMERICAL INTEGRATION

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

SECTION 9-4 Translation of Axes

1. Extend QR downwards to meet the x-axis at U(6, 0). y

Lecture 20: Numerical Integration III

Undergraduate Research

A Matrix Algebra Primer

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

Math& 152 Section Integration by Parts

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

than 1. It means in particular that the function is decreasing and approaching the x-

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 473: Practice Problems for the Material after Test 2, Fall 2011

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

B.Sc. in Mathematics (Ordinary)

Definite integral. Mathematics FRDIS MENDELU

Matrices and Determinants

Best Approximation. Chapter The General Case

Section 7.1 Integration by Substitution

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Partial Differential Equations

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

Numerical Methods I Orthogonal Polynomials

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

Lecture 19: Continuous Least Squares Approximation

Chapter 3 Polynomials

Chapter 6 Techniques of Integration

Mathematics Extension 1

Mathematics Higher Block 3 Practice Assessment A

Discrete Least-squares Approximations

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

20 MATHEMATICS POLYNOMIALS

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Quadrature Rules for Evaluation of Hyper Singular Integrals

Problem Set 3 Solutions

We know that if f is a continuous nonnegative function on the interval [a, b], then b

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Elements of Matrix Algebra

The usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1

The Riemann Integral

Math 231E, Lecture 33. Parametric Calculus

Chapter Direct Method of Interpolation More Examples Civil Engineering

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

4. Approximation of continuous time systems with discrete time systems

Anti-derivatives/Indefinite Integrals of Basic Functions

3.4 Numerical integration

Chapter 8: Methods of Integration

Chapter Direct Method of Interpolation More Examples Electrical Engineering

BRIEF NOTES ADDITIONAL MATHEMATICS FORM

Section 14.3 Arc Length and Curvature

CHAPTER 6b. NUMERICAL INTERPOLATION

Adding and Subtracting Rational Expressions

PHYSICS 116C Homework 4 Solutions

(4.1) D r v(t) ω(t, v(t))

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

1 Part II: Numerical Integration

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations

Chapter 1. Chapter 1 1

Mathematics. Area under Curve.

We divide the interval [a, b] into subintervals of equal length x = b a n

Chapter 8.2: The Integral

Math 113 Exam 2 Practice

Abstract inner product spaces

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

Numerical Analysis: Trapezoidal and Simpson s Rule

Chapter 6 Notes, Larson/Hostetler 3e

Summary: Method of Separation of Variables

Operations with Polynomials

MCR 3U Exam Review. 1. Determine which of the following equations represent functions. Explain. Include a graph. 2. y x

Matrix Eigenvalues and Eigenvectors September 13, 2017

THE DISCRIMINANT & ITS APPLICATIONS

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Total Score Maximum

Student Handbook for MATH 3300

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

Math Fall 2006 Sample problems for the final exam: Solutions

CLOSED EXPRESSIONS FOR COEFFICIENTS IN WEIGHTED NEWTON-COTES QUADRATURES

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Miscellaneous Problems. pinned to the ground

Matrices, Moments and Quadrature, cont d

Euler-Maclaurin Summation Formula 1

Transcription:

AMAT 34 Numericl Methods Instructor: Mrios M. Fyrills Emil: m.fyrills@fit.c.cy Office Tel.: 34559/6 Et. 3 HOMEWORK ASSIGNMENT ON INTERPOATION QUESTION Using interpoltion by colloction-polynomil fit method find seconddegree polynomil tht fits the dt below: f() 3.4.948 3.5.8574 3.6.77778 Verify your clcultion using second-order grnge interpoltion polynomil. Generl Eqution y α α α Step.948 α 3.4α (3.4) α (Eqution ).8574 α 3.5α (3.5) α (Eqution ).77778 α 3.6α (3.6) α (Eqution 3) Step 3.4.56.948 3.5.5.8574 3.6.96.77778.948 3.4.56.8574 3.5.5.77778 3.6.96 3.4.56 3.5.5 3.6.96.948[(3.5*.96) (3.6 *.5)].8574[(3.4 *.96) (3.6 *.56)].77778[(3.4 *.5) (3.5 *.56)] [(3.5*.96) (3.6 *.5)] [(3.4 *.96) (3.6 *.56)] [(3.4 *.5) ( 3.5*.56)].8583

Step 3 3.4.56.948 3.5.5.8574 3.6.96.77778.948.56.8574.5.77778.96 3.4.56 3.5. 5 3.6.96 [(.8574*.96) (.77778*.5)] [(.948*.96) (.77778*.56)] [(.948*.5) (.8574*.56)] [(3.5*.96) (3.6*.5)] [(3.4*.96) (3.6*.56)] [(3.4*.5) (3.5*.56)] -.4 Step 4.948 α 3.4α (3.4) α (Eqution ) α.85 α -.4 (3.4) α.948 - α - 3.4α.56α.948.85 (3.4)(-.4) α. Verify the clcultion using second-order grnge interpoltion polynomil. grnge Eqution Ρ ( ) ( )( ) ( )( ) ( )( ) 3 3 * y * y * y3 ( )( 3) ( )( 3) ( 3 )( 3 ) ( 3.5)( 3.6) ( 3.4)( 3.6) ( 3.4)( 3.5) *.948 *.8574 *.77778 (3.4 3.5)(3.4 3.6) (3.5 3.4)(3.5 3.6) (3.6 3.4)(3.6 3.5) ( 3.5 3.6.6) ( 3.4 3.6.4) ( 3.4 3.5.9) *.948 *.8574 *.77778... ( 3.5 3.6.6) *4.759 ( 3.4 3.6.4) * ( 8.574) ( 3.4 3.5. 9) *3.8889 4.759 4.489 85.9434 8.574 99.9998 349.73936 3.8889 95.8334 65.779. -.4.8583 This result grees with the previous results obtined through colloction method.

QUESTION The dt in the tble seem to fit cubic eqution. Determine by lest squres the optimum degree of polynomil. f ( ) f ( ) f ( )..9 6.6 36. 3. -48.6. 7.9 7. 3.7 4. -4..6 4.9 8. 3. 5.6-5.6.4 4.9 9..5 6. -3.5.5 34.9 9.4-3. 7.6-34.6 4. 4.7. -3. 7.9-6.4 5. 9.7.4-8.7 9. -3.8 6. 49.8. -39.5. -. The eqution hs the form y. 3 3 The objective is to find the optimum coefficients such tht this represents lest squre fit. For generl fit of the form the Norml Equtions re s follows n y n N... y n i i n i i 3 n i i i... n i iyi 3 4 n i i i... n i i i... y... y n n n n n i i i n i i i where N is the number of points nd n N. In this cse we only need the first four equtions N y 3 i i 3 i i 3 4 i i i 3 i i i 3 4 5 i i i 3 i i i 3 4 5 6 i i i 3 i i i y y y Bsed on the results of the tble on the net pge the system of eqution is s follows: 4 3.8 3.84 4745. -. 3 3.8 3.84 4745. 76836.45-346.7 3 3.84 4745. 76836.45 3 3 3845.3-677. 4745. 76836.45 3845.3 9355836.8-8994.55 The resulting eqution is s follows f 6.355 4.86 3.6. 3

SUM y..9. 7.9.6 4.9.4 4.9.5 34.9 4. 4.7 5. 9.7 6. 49.8 6.6 36. 7. 3.7 8. 3 9..5 9.4-3.. -3.4 8.7. 39.5 3. 48.6 4. 4. 5.6 5.6 6. 3.5 7.6 34.6 7.9 6.4 9. 3.8 -. 3 4 5 6 y y 3 y......9.9.9..33.464.65.7756 8.69 9.559.549.56 4.96 6.5536.48576 6.7776 39.84 63.744.994 5.76 3.84 33.776 79.664 9.976 59.76 43.44 344.76 6.5 5.65 39.65 97.6565 44.465 87.5 8.5 545.35 6.8 68.9 8.576 58.56 475.44 75.7 77.787 94.967 7.4 4.68 73.66 38.43 977.6966 54.44 83.88 476.576 37. 6.98 384.584 8445.963 55.37436 33.78 853.58 33.6538 43.56 87.496 897.4736 53.3576 8653.95 38.6 57.56 378.656 5.4 357.9 54.68 84.935 8.839 68.7 94.77 848.497 67.4 55.368 45.76 3773.9843 346.674 6.6 874. 767.784 8.8 753.57 6857.496 643.45 567869.5 86.55 697.65 5448.55 88.36 83.584 787.4896 7339.44 689869.78-9.4-73.96-574.84 3. 367.63 58.74 6855.855 8744.55-44.3-6.73-7779.3 9.96 48.544 6889.66 954.458 9497.64-37.8-379.85-45.38 48.84 85.848 53.3456 77.863 39733.959-48.9-5879.8-775.996 74.4 99.968 3359.5776 4746.443 58985.8-64.5-8468.64 778.4448 98.8 83. 3955.46 55738.367 785847.975-566.8-799.6 689.484 43.36 3796.46 594.896 93895.7978 44774.45-84.96 557.376 95895.656 59. 473.8 6789.84 8756.68 74674.3-49.5-795.95 785.75 39.76 545.776 9595.576 68874.34 9786.55-68.96 77.696 8863.4496 3.4 5735.339 66.568 837659.969 38943.44-93.56-554.74-9459.5596 364.8 6967.87 3386.336 54949. 48556.7-63.58-534.378-9656.698 4 8 6 3 64 - -44-88 3.8. 3.84 4745. 76836.45 3845.3 9355836.8 346.7 677. 8994.55

QUESTION 3 Hlf-wve rectifier: A sinusoidl voltge Esin( ω t), where t is time, is pssed through hlf-wve rectifier tht clips the negtive portion of the wve. The resulting function is if / < t < u Esin( ωt) if < t < /. Determine for the cse E nd ω nd plot the function. b. Find the Fourier series of the resulting periodic function by direct integrtion. c. Find the finite Fourier series by discretizing the function in 8, 6 nd 3 points. Ft () k cos kt bksin kt k where is the period of the signl nd the coefficients nd b re given by k F() t cos kt dt bk F() t sin kt dt k k ω κ f ( t)cos( κt) dt b f ( t)sin( κt) dt,,, f( tdt ) f( t)cos( tdt ) b f( t)sin( tdt ) κ / / cos( t) cos( ) f( tdt ) f( tdt ) sin( tdt ) / / / f ( t)cos( t) dt f ()cos( t t) dt sin( t)cos( t) dt / / / b f ( t)sin( t) dt f ( t)sin( t) dt sin ( t) dt / /

QUESTION 4 The dt in the tble seem to fit qudrtic eqution. Determine by lest squres the optimum coefficients if you know tht the curve must pss through the point (,). f ( ) f ( ) f ( ).5.956.46.57.8.36..89.5.539.98.4.5.83.7.378.7.4.3.77.74.37 If the line must pss form the point (,), then it must be of the form y, i.e.. The Norml Equtions re s follows y 3 i i i i i 3 4 i i i i i y QUESTION 5 In n eperiment the following set of dt were collected: f ( ) f ( ) f ( ). 9 6.6 655 3. 3. 7. 755 4. 498.6 565 8. 863 5.6 56. The dt seem to fit liner eqution. Determine by lest squres the coefficients of the eqution. We fit liner eqution of the form y hence we need only the terms tht involve nd : Substitute the results: N y i i i i iyi 9 67.6 67535 67.6 78.4 78688 Solve the bove system to find.8 nd 999.

6 4 8 6 4 4 6 8 4 6 b. Determine the liner eqution if you know tht the line must pss through the point (,). If the line must pss form the point (,), then it must be of the form y, i.e.. To determine the pproprite form of the equtions one must go bck to theory. The error between the line nd ech point is e y e y e y 3 3 etc e9 y9 9 To find the optimum line, I hve to minimize the sum of the squres of the error, i.e. minimize S( e e e... e ). At the minimum the derivtive must be zero 3 9 ds d ( y )( ) ( y )( )... ( )( y )( ) ( y )( )... ( y ) ( y )... y y...... y y... y 78688 78.4 999. i i i 3

QUESTION 6 () Using interpoltion by Direct Fit Polynomil (colloction polynomil method) find third-degree polynomil tht fits the dt below: f() - 5-9 (b) Verify your result with third-order grnge polynomil. Multiply out ech 3 term to epress in stndrd form, b c d (c) Using lest-squre regression, determine the optimum qudrtic polynomil.

QUESTION 7 Determine the Fourier Series: Ft () kcos kt bksin kt k for the rectngulr pulse shown on the figure: F() t.5.5 Solution: k F() t cos kt dt bk F() t sin kt dt The period is! 3 4 F() t dt F() t dt F() t dt dt t k F t kt dt kt dt ( ) cos cos( ) cos( ) cos ( kt) dt sin ( kt) sin ( k) sin ( ) k k bk F( t) sin kt dt sin ( kt) dt sin ( kt) dt sin ( kt) dt cos( kt) cos() cos( k) cos( k) k k k 4 Hence Ft ( ) k,3,5... sin ( kt) k kt dt t if k even, i.e.,4,6... 4 if k odd, i.e.,3,5... k

QUESTION 8 Given the function y f( ) the inverse function is defined s f ( y). Show tht the inverse function cn be pproimted to second order through the polynomil: ( y y)( y y) ( y y)( y y) ( y y)( y y) ( y y )( y y ) ( y y )( y y ) ( y y )( y y ) where (, y), (, y ) nd (, y ) re three selected points. Hence, develop second order lgorithm through which you cn obtin the root of the eqution f( ). Above eqution is in the form of second order grnge polynomil, hence it psses through the points (, y ), (, y ) nd (, y ). As we hve inverted with y, bove polynomil represents the inverse function. The eqution f( ) is ssocited with the point y of the eqution y f( ). Hence, by setting y in the bove eqution we obtin the point ( y )( y ) ( y )( y ) ( y )( y ) 3 ( y y)( y y) ( y y)( y y) ( y y)( y y). The lgorithm is s follows: y y y y y y ) n n n n n n n n n ( yn yn )( yn yn) ( yn yn )( yn yn) ( yn yn )( yn yn n