J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

Similar documents
Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

OUTCOME 2 - TUTORIAL 1

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

Convection Heat Transfer. Introduction

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Q.1. x A =0.8, ε A =δ A *y A = 0.8*5=4 (because feed contains 80 mol% A, y A = 0.8, δ A =((6-1)/1)=5) k= 0.3 hr -1. So, θ = hr Q.

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

Convective Heat Transfer

Introduction to Heat and Mass Transfer. Week 14

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0

MAE 101A. Homework 3 Solutions 2/5/2018

Principles of Food and Bioprocess Engineering (FS 231) Exam 2 Part A -- Closed Book (50 points)

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued...

ME 331 Homework Assignment #6

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

Solved problems 4 th exercise

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2

Heat processes. Heat exchange

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

ME 375 FINAL EXAM Wednesday, May 6, 2009

Feedback Control Systems (FCS)

University of Rome Tor Vergata

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

This appendix derives Equations (16) and (17) from Equations (12) and (13).

Introduction to Laplace Transform Techniques in Circuit Analysis

Conduction Heat transfer: Unsteady state

POINCARE INEQUALITY AND CAMPANATO ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS

m = P 1V 1 RT 1 P 2 = P 1. P 2 V 2 T 2 = P 1V 1 T 1 V 1 2 V 1 T 2 = T 1. {z} T 2 = T 1 1W 2 = PdV = P 1 (V 2 V 1 ). Z T2 (c vo + αt)dt.

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

55:041 Electronic Circuits

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

Mass Transfer (Stoffaustausch) Fall Semester 2014

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Convection Workshop. Academic Resource Center

Heat Transfer. Solutions for Vol I _ Classroom Practice Questions. Chapter 1 Conduction

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Physics Exam 3 Formulas

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

SOLUTION MANUAL CHAPTER 12

Laplace Transformation

Math 273 Solutions to Review Problems for Exam 1

AOS 104 Fundamentals of Air and Water Pollution

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1.

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2

HEAT EXCHANGER. Objectives

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Design of Digital Filters

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1

Lecture 30 Review of Fluid Flow and Heat Transfer

Convective Mass Transfer

FORMULA SHEET. General formulas:

6. Laminar and turbulent boundary layers

Examination Heat Transfer

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

External Forced Convection :

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Exam 1 Solutions. +4q +2q. +2q +2q

TankExampleNov2016. Table of contents. Layout

If there is convective heat transfer from outer surface to fluid maintained at T W.

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model.

Solutions to exercises week 45 FYS2160

Lecture 8: Period Finding: Simon s Problem over Z N

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

Function and Impulse Response

9 Lorentz Invariant phase-space

EE Control Systems LECTURE 14

Chapter 13. Root Locus Introduction

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

Lectures on Exact Solutions of Landau 1+1 Hydrodynamics Cheuk-Yin Wong Oak Ridge National Laboratory

ME 375 EXAM #1 Tuesday February 21, 2006

PHYSICAL MECHANISM OF CONVECTION

Heat Transfer Convection

1 Routh Array: 15 points

Pulsed Magnet Crimping

Chapter 4. The Laplace Transform Method

March 18, 2014 Academic Year 2013/14

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

EE Control Systems LECTURE 6

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

TKP4105 Separation Technology Exercise 1 Mass Transfer Solution to problems

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Chapter 1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity

Bogoliubov Transformation in Classical Mechanics

Transcription:

.P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70

.P. Holman:.5) Generally, -D with no internal heat gereration and teady tate: dt dx dt + 0 dy T B : 700 Here, x y and hence T A : 00 T C : 00 T + T + T + T i+, j i, j+ i, j i, j T i, j So, Fourier law becomme a ytem of linear equation. T D : 500 Set a gue value for all temperature T A + T B + T C + T D T : T : T T : T T : T Given T C + T B + T + T T T + T + T A + T D T T C + T + T + T D T T + T B + T A + T T Temp : Find T, T, T, T Temp 87.5 0 Temp 87.5 6.5 7.5.5

Exam problem P.6) A urf 0.006m T i : 65 : h urf : 50 m dl : 0.liter T end : 50 T 00 : 0 V: dl ma : 0.g ma ρ : ρ 000 g V c p : 70 g h l : 8 m A l : 0.0m In the text, it i aumed that inner thermal reitance i neglected! > umped Capacity!!!!, Eq. -5. T T 00 T i T 00 ha τ ρcv e Since we have heat tranfer at everal interface, the uperpoition principal i to be ued, ee page in Handboo by Granryd. ρ c p V τ 0_cylinder : h l A l τ 0_cylinder. 0 ρ c p V τ 0_urf : τ 0_urf.78 0 h urf A urf Now, according to the handboo, page, and the textboo, ection -5. T T 00 T i T 00 τ τ τ 0_cylinder τ 0_urf e e which can be implified to τ T T 00 τ 0_tot e T i T 00 where τ 0_tot : + τ 0_tot.695 0 τ 0_cylinder τ 0_urf which alo could be expreed a ρ c p V ρ c p V τ 0_tot τ 0_tot : τ 0_tot.695 0 Σ( h A) h l A l + h urf A urf So, olving for the time, for which T: T end τ τ 0_tot ln T T 00 : T i T 00 Thu, τ 687. τ.55 min

Exam problem P.7) T 0 : 0 C T 00 : 0 C h out : 00 m Heat tranfer by conduction inide the can! C : d Coe : 65mm d Coe r : : 5mm coe 0.58 : c p : 00 ρ : 000 g m g a) Calculate how long tim it tae to cool the Coe to T: C if the can i conidered to be long. b) Calculate the temperature the coe will have at the calculated intance if the edge are conidered. a) h out r Bi : Bi 5.60 coe α τ coe Fo : where r α : ρ c p α.8 0 7 m In fig.88 c, the mean temperature of a infinite cylinder i already calculated. ϑ m T T 00 ϑ 0 T 0 T 00 T T 00 T 0 T 00 0.6 Figure give Fo : 0 Thu the time for thi i Fo r τ : τ 76.87 τ.78 min α b) If conideration i taen to the edge, what i the temperature? h out See the edge a the pecial cae of plate Bi : Bi 9.9 coe Figure.78-c in handboo. α τ Fo : Fo 0.0 ϑ m 0.88 Hence, the average temperature in the can i ϑ 0 plate ϑ m 0.6 0.88 T can : T 00 + ( T 0 T 00 ) 0.6 0.88 ϑ 0 can T can 0.56 C

.P. Holman, 5.) T oo : 90 C p : bar u oo : 0 m bar : 0 5 Pa C : x δ :.5cm δ Chec if the boundary layer i laminar or turbulent at the location. u oo x δ Re x : where Re x.9 0. 0 5 a + b T 90 + 7.5 6.5 50 00 m The boundary layer become turbulent at the critical Reynoold number Re cr : 5 0 5 50 00 0.76 0 6 5.90 6.5 0.76 5.90 m. 6.5 (Table A5) Re x > Re cr 0 > No, the boundary layer i till laminar. So, eq. 5-a i ued: δ x 5.0 Re x and 5.0 x δ δ : δ 0.679 mm Re x How doe the entire layer loo lie? x cr : Re cr u oo x cr 0.69 m δ( x) : 5 x u oo x δ if x < x cr 5 u oo x δ x 0.8 0.56 u oo x δ otherwie 0.0 δ( x) 0.0 0.0 0 0 0. 0. 0. 0. 0.5 x

.P. Holman, 6.09) C : Engine Oil a Fluid d i :.5cm T in : 8 C u: 0 cm : m T wall : 65 C Etimate the total heat tranfer and the outgoing oil temperature! T in + T wall Aume the average bul temperature of the oil for propertie! T bul : T bul 5.5 C Set T bul : 50 C for implicity! Table A-, page 657: 0 876.05 g ρ : 60 86.0 50 ρ 870.05 g c p : 0 60 96 07 50 g c p.006 0 g 0 0.000 m : 60 0.89 0.69 0 m 50 0 0. : 0. 60 0.0 50 m m µ : ρ µ 0. Pa µ c p Pr : Pr.99 0 α : α 8.8 0 8 m ρ c p Recalculate the propertie if neceary when the outlet temperature i nown! u d i Re : Re.55 AMINAR FO Contant wall temperature, ue eq. 6-9. d i 0.0668 Re Pr Nu :.66 + Nu 9.6 d i 0.0 Re Pr +

a impler eq. i 6-0 60 w 0.89 0 m : 80 0.75 0 w 7. 0 5 m 65 60 ρ w : 80 ( T wall T out ) T wall T in + ϑ m T T out T in A : π d i A 0.8 m Q m u π d i : ρ Q m 0.0 g So, inerted in energy balance h π Solving for 86.0 85.0 ( T wall T out ) T wall T in + d i u π d i ρ c p T out T in 65 g ρ w 86.05 g d i µ w : w ρ w µ w 0.06 Pa Re Pr 9.998 > 0, and can be ued d 0. i Nu.86 ( Re Pr) µ : µ w Nu.0 Nu So, the heat tranfer coefficient i h : h 6.665 d i m Energy balance over the tube q h A ϑ m Q m c p T where h T wall h T in + u d i ρ c p T in T out : T ( h + u d i ρ c p ) out.0 and q: Q m c p T out T in q 86.0 T in + T out Controll the aumed Bul temperature T bul : T bul.007 C Redo all the calculation with new thermal propertie of the OI!!!!!!!!!!

.P. Holman, 6.) Air duct H: 5cm u : 7.5 m T : 00 B : 90cm p : atm : m A: H B A 0.05 m P: ( H + B) P.7 m A D H : D H 0.6 m P Table A-5 ρ.77 g : c p : 005.7 µ.86 0 5 µ : Pa :.568 0 5 m g ρ 0.06 : α : α.6 0 5 m µ c p Pr : Pr 0.708 m ρ c p u D H Re : Re.87 0 5 Highly turbulent! Dittu Boelter, eq. 6- Nu : 0.0 Re 0.8 Pr 0. Nu 65.508 Nu h : h 0.58 D H m Ue Petuhov equation, eq. 6-7 & 6-8. n: 0 for gae! µ w : µ f : (.8 log( Re).6) f 0.05 f 8 Re Pr n µ Nu : Nu 85.07 µ w f.07 +.7 Pr 8 Nu h : h 6.89 D H m p: f D H ρ u p 0.80 Pa m Figure 6- give f : 0.05 p: f D H ρ u p 0.8 Pa m

Exam problem P.) C : Given r ice : 5000 T ice : 0 C g ρ ice : 900 g T 00 : C To melt ice x: mmit tae Formelamling: E ρ ice A x r ice E M r ice ρ ice x r ice A A ρ air :.9 g air. 0 6 m : E ε.05 0 5 ε ε : ρ ice x r ice A m µ µ air.7 0 5 air : air ρ air Pa The time required i given by t c ε air : 0.0 p_air : 006 E q τ > ε q'' τ τ d q τ g m 0 q'' µ air c p_air Pr : Pr 0.78 air Heat tranfer to the ice q h A T 00 T ice > q'' h T 00 T ice Thu, τ ε h T 00 T ice b) a) h a : 8 m : 5m h b h b_conv ( + 0.5) u oo : 5 m ε τ a : u oo h a ( T 00 T ice ) Re : Re.88 0 6 The flow i firt laminar and air at the end of the plate it become turbulent! τ a 9. 0 Ue eq. 5-85 τ a 57.0 min 0.8 Nu Nu.68 0 : Pr 0.07 Re 87 τ a.67 hr F.S. 0.8 Nu 0.06 Re 85 Pr : Nu.6 0 Nu air h b_conv : h b : h b_conv ( + 0.5) h b_conv.68 m h b 8.957 m τ b : ε h b T 00 T ice τ b.976 0 τ b 66.68 min

.P. Holman, 7.09) : m C : T : 00 C + 7.5 C T air : 5 C + 7.5 C T + T air : H: m 85.65 7.5 C.5 Table A-5: ρ : 50 500.78 0.708 g ρ 0.77 g m - 50 c p : 500 µ : : 50 500 50 500 00.7 09.5.8 0 5.67 0.0707 0.008 g m Pa c p.07 0 g µ.67 0 5 Pa 0.09 m α : ρ c p µ c p µ Pr : : α 5.79 0 5 m ρ Pr 0.68.599 0 5 m β : β.059 0 g β T T air H Gr : Gr 5.88 0 9 Gr Pr.986 0 9 Tab (7-) > C : 0.0 n : Equation 7-5, > Nu : C ( Gr Pr) n Nu 58.558 Nu h : h 6.5 H m q: h H T T air q. 0

.P. Holman, 7.7) :.m C : T : 55 C + 7.5 C T air : C + 7.5 C T + T air : 0.65 Table A-5: 00.77 ρ g : 50 0.9980 H: 7m 00 c p : 50 µ : : 00 50 00 50 005.7 009.0.86 0 5.075 0.06 0.000 g 0.06 α.5 0 5 m Pr 0.707.59 0 5 m m β : β.0 0 g β ( T T air ) H Gr : Gr.9 0 Gr Pr.58 0 Tab (7-) > C : 0.0 n : Equation 7-5, > Nu : C ( Gr Pr) n Nu.65 0 m Pa µ c p µ α : Pr : : ρ.68 g m - c p.006 0 µ.858 0 5 Pa ρ c p ρ g Nu h : h.0 H m q: h H T T air OR Ue eq. 7-9 Ra Gr Pr : Nu : 0.85 + + 6 0.87 Ra 0.9 Pr 9 6 8 7 q.086 0 q: h H T T air q.50 0 Nu.8 0 Nu h : h.85 H m