Mitochondrial DNA and its Role in Contemporary Paleoanthropology

Similar documents
M i t o c h o n d r i a

Evolution Problem Drill 10: Human Evolution

Mitochondrial DNA Prof. Immo E. Scheffler

Lecture 11 Friday, October 21, 2011

Extranuclear Inheritance. Dr.Shivani Gupta, PGGCG-11, Chandigarh

MITOCHONDRIAL DNA MUTATIONS IN HUMAN DISEASE

Population Genetics of Modern Human Evolution

Out of Africa: The origin of Homo Sapiens (Us!)

Extranuclear Inheritance. Organelle Heredity Involves DNA in Chloroplasts and Mitochondria

Leber s Hereditary Optic Neuropathy

Human Evolution

Human Evolution. Darwinius masillae. Ida Primate fossil from. in Germany Ca.47 M years old. Cantius, ca 55 mya

Casey Leonard. Multiregional model vs. Out of Africa theory SLCC

Deviations from Mendelian Genetics-Organelles

Mitochondrial DNA Medicine

31/10/2012. Human Evolution. Cytochrome c DNA tree

What are mitochondria?

Full file at CHAPTER 2 Genetics

Primate Diversity & Human Evolution (Outline)

One of the great challenges in molecular biology is to understand the mechanisms by

The Mitochondrion. Renáta Schipp

Genetic Admixture in the Late Pleistocene

Percolation model for the existence of a mitochondrial Eve

GENETICS OF MODERN HUMAN ORIGINS AND DIVERSITY

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Who Were Neanderthals and Did They Interbreed with Modern Humans?

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Darwin's theory of evolution by natural selection. Week 3

Examples of Phylogenetic Reconstruction

Unit 4 Evolution (Ch. 14, 15, 16)

Origami Organelles tm

Level 3 Biology, 2014

Chapter 2 Evolution: Constructing a Fundamental Scientific Theory

A stochastic model for the mitochondrial Eve

Unit 5: Taxonomy. KEY CONCEPT Organisms can be classified based on physical similarities.

Review sheet for the material covered by exam III

Extranuclear Inheritance

Mitochondria Mitochondria were first seen by kollicker in 1850 in muscles and called them sarcosomes. Flemming (1882) described these organelles as

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

HUMAN EVOLUTION 17 APRIL 2013

Evolution of human diversity. The history of Homo sapiens

Evolution Problem Drill 09: The Tree of Life

1. The Fossil Record 2. Biogeography 3. Comparative Anatomy 4. Comparative Embryology 5. Molecular Biology

Quiz # How did the genus Homo differ from the earlier hominins? How did it s skull differ? How did its limb bones differ?

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine?

Evolution & Natural Selection

Darwin's theory of natural selection, its rivals, and cells. Week 3 (finish ch 2 and start ch 3)

Do you share more genes with your mother or your father?

Eukaryotic Cells. Figure 1: A mitochondrion

Genomes and Their Evolution

Selection against A 2 (upper row, s = 0.004) and for A 2 (lower row, s = ) N = 25 N = 250 N = 2500

The Complete Set Of Genetic Instructions In An Organism's Chromosomes Is Called The

Extensive evidence indicates that life on Earth began more than 3 billion years ago.

8/23/2014. Phylogeny and the Tree of Life

Phylogeny and Molecular Evolution. Introduction

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Define The cell organelles. Describe the comparison between prokaryotic and eukaryotic cells Determine the types of cell.

Ch. 13 Meiosis & Sexual Life Cycles

MTERFD3 is a Mitochondrial Protein that Modulates Oxidative Phosphorylation

Textbook. No textbook for this course

Constructing a Pedigree

Phylogeny and Molecular Evolution. Introduction

Bi1: The Great Ideas of Biology Homework 3 Due Date: Thursday, April 27, 2017

bs148h 18 September 2007 Read: Text pgs , ch 25 & 26

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

Biology 10 th Grade. Textbook: Biology, Miller and Levine, Pearson (2010) Prerequisite: None

Molecular evolution - Part 1. Pawan Dhar BII

Homo habilis males feeding in East Africa. Two robust australopithecines are approaching. ( Myr ago) The Homo radiation

Structures and Functions of Living Organisms (LS1)

Biological Anthropology

Name: Hour: Teacher: ROZEMA. Inheritance & Mutations Connected to Speciation

Organizing Life s Diversity

Chapter 26 Phylogeny and the Tree of Life

Graduate Funding Information Center

Drosophila melanogaster and D. simulans, two fruit fly species that are nearly

In 1831 people thought:

Lecture 7 Cell Biolog y ٢٢٢ ١

Evolutionary change. Evolution and Diversity. Two British naturalists, one revolutionary idea. Darwin observed organisms in many environments

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall

Evolution and Our Heritage

Chapter 2 Cells and Cell Division

Chapter 16: Evolutionary Theory

BIOLOGY Grades Summer Units: 10 high school credits UC Requirement Category: d. General Description:

Origin of an idea about origins

Microbial Taxonomy. Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

A Summary of the Theory of Evolution

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Week 7.2 Ch 4 Microevolutionary Proceses

HUMAN EVOLUTION. Where did we come from?

BIOLOGY STANDARDS BASED RUBRIC

GSBHSRSBRSRRk IZTI/^Q. LlML. I Iv^O IV I I I FROM GENES TO GENOMES ^^^H*" ^^^^J*^ ill! BQPIP. illt. goidbkc. itip31. li4»twlil FIFTH EDITION

Microbial Taxonomy and the Evolution of Diversity

Name: Period Study Guide 17-1 and 17-2

Stem Cell Biology and Regenerative Medicine

Topic 1 - The building blocks of. cells! Name:!

Tor Olafsson. evolution.berkeley.edu 1

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm

EVOLUTION ALGEBRA Hartl-Clark and Ayala-Kiger

Ladies and Gentlemen.. The King of Rock and Roll

Transcription:

Mitochondrial DNA and its Role in Contemporary Paleoanthropology D. John Doyle April 2012

Mitochondria are extraordinarily complex biochemical structures ( organelles ) located inside eucaryotic cells (Figure 1). Mitochondria convert glucose energy into an energy form that cells can make use of, called ATP. This important process is known as oxidative phosphorylation, and it is ultimately controlled by the cell s intricate genetic machinery. Figure 1: Schematic representation of a mitochondrion. Their position inside a typical eucaryotic cell is shown in the upper left of the figure. Note that nm (bottom right) is short for nanometer. Image Credit: http://kentsimmons.uwinnipeg.ca/cm1504/image110.gif 2

There are an estimated 20,000 to 25,000 genes (3.1 billion base pairs) in the human genome [1]. Of these, a small number are composed of mitochondrial DNA (mtdna) found in the mitochondria, as opposed to the usual genes based on conventional DNA (nuclear DNA, chromosomal DNA) found in all cell nuclei. In fact, as illustrated in Figure 2, the human mitochondrial genome consists of a mere 37 genes, involving 16,569 base pairs, and these code for 13 proteins, 22 trnas (transfer RNAs), and 2 rrnas (ribosomal RNAs) [2]. Nuclear and mitochondrial DNA are thought to have evolved separately, with mtdna having developed eons ago from bacteria engulfed by ancestor cells (endosymbiotic hypothesis) [3]. Also, each mitochondrion contains multiple copies of mtdna, as opposed to only a single copy of regular DNA in cell nuclei. Conventional (nuclear) DNA in an individual is inherited from both parents, with one chromosome of each chromosome pair coming from each parent. This process results in genes being rearranged, a process known as recombination. 3

Figure 2: Map of human mitochondrial DNA diagrammed as a circular structure with genes and regulatory regions labeled. Note that kbp in the figure stands for kilo base pairs (of mtdna). As an example, mutations of the MT-ATP6 gene (located at 7 o clock) have been found in some people with neuropathy, ataxia, and retinitis pigmentosa. This gene normally provides instructions for making a component of an enzyme called ATP synthase; mutations in the MT-ATP6 gene reduce the ability of mitochondria to make ATP. (See Appendix for information on other mutations with clinical implications). Image Credit: http://ghr.nlm.nih.gov/chromosome=mt 4

By contrast, mtdna is passed on to an individual only from that person s mother, and it is passed on with (virtually) no change. This point bears emphasizing: all of a person s mitochondria are derived from his or her mother only there is ordinarily no paternal contribution [4]. Because of this fact (known as matrilineal descent) and because the mutation rate of mtdna is higher than that of regular DNA, mtdna can be to help track ancestry (vide infra). There are also other reasons why mtdna is so helpful to scientists. Since most cells contain many mitochondria (sometimes thousands in each cell) and since each mitochondrion contains a number of copies of mtdna (typically 2 to 10), the end result is that most cells contain thousands of copies of mtdna but can have only one set of nuclear DNA (Figure 3). As a result, technically adequate samples of mtdna can usually be obtained using far smaller amounts of tissue than for conventional DNA studies, a point used to advantage in both the genealogical and forensic scientific arenas. 5

Figure 3: Nuclear DNA has a smaller number of copies per cell than mitochondrial DNA and is inherited from both parents. Mitochondrial DNA is maternally inherited without recombination and, thus, is not unique to an individual. Image Credit: Image and figure legend from http://www.fbi.gov/hq/lab/fsc/backissu/july1999/dnaf1.htm In recent years mitochondrial DNA has played a unique role in providing insight into our human origins. One ongoing controversy in paleoanthropology (the study of human origins) concerns the origin of Homo sapiens [5]. According to the fossil record, about 100 millennia ago the world was populated by diverse hominids: Homo sapiens, Homo erectus, 6

and Homo neanderthalensis. However, by about 30 millennia ago this diversity disappeared and humans everywhere evolved into our current modern form. The exact mechanism of this transformation is currently the subject of great debate. One school of thought, the multiregional continuity model [6] holds that Homo erectus dispersed form Africa into other regions, slowly evolving into modern humans. The other school of thought hold that a single African origin exists for modern humans ( Out of Africa model ) [7]. At the moment, the available scientific evidence seems to favor the latter model (the model of African origin) over the multiregional model on the basis that fossils of modern-like humans have been found in Africa (e.g., Lucy ), and because of the discovery of early human artifacts in Africa. In particular, recent mitochondrial DNA evidence has become available to even further support the Out of Africa model [8]. For example, mtdna variation among modern human populations has been shown to be small compared to, for instance, the mtdna variation between various nonhuman primates, 7

suggesting that human origins are relatively recent in evolutionary history [9]. In addition, it has been shown that African human populations have more diverse mitochondrial DNA sequences compared to other human populations, a fact suggesting an earlier origin of the African peoples compared to other humans [10]. Finally, judging from recent analyses of mitochondrial DNA from Neandertal bones, it has been established that is unlikely that the Neandertals were ever members of our own species [11]. One particularly interesting notion in genetic paleoanthropology is that of a molecular clock. If mutations in human mtdna are believed to be random events that occur at a roughly uniform rate of (say) one every 3,000 years, then should the mtdna sequences of two populations differ by, say, 10 nucleotides, it can be inferred that the two populations split from a common ancestral population about 30,000 years ago [12]. This clock can even (in principle) be calibrated using living species whose date of speciation is known from the fossil record. At the moment, however, the molecular clock concept remains controversial as a result of reports of 8

non-uniform rates of molecular evolution, species-specific differences in mutation rates, variations in generation times and other recent findings [13]. Another interesting concept in paleoanthropology is Mitochondrial Eve [14]. Mitochondrial Eve is the name sometimes given by paleoanthropologists to the woman whose mitochondrial DNA is now found in all living humans. That is, every mtdna in every living person is ultimately inherited from her mitochondria. Mitochondrial Eve is believed to have lived about 150,000 years ago [14]. Related to this is Y-chromosomal Adam : because the Y chromosome present only in males is transmitted unchanged from father to son, all Y chromosomes can presumably be traced back to a single prehistoric father [15]. In conclusion, the analysis of mitochondrial DNA offers a remarkable, if sometimes controversial, anthropological tool for exploring our human origins. In particular, it provides provisional support for the hypothesis that contemporary humans stem from a common African ancestor. 9

REFERENCES [1] Little PF. Structure and function of the human genome. Genome Res. 2005;15(12):1759-66. [2] Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457 474. [3] van der Giezen M. Endosymbiosis: past and present. Heredity. 2005;95(5):335-6. [4] Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77(11):6715 6719. [5] Nitecki MH, Nitecki DV (eds.). 1994. Origins of Anatomically Modern Humans. New York. Plenum Press. [6] Thorne AG, Wolpoff MH. The multiregional evolution of humans. Scientific American. 1992; 266(4):76-9,82-3. [7] Wilson AC, Cann RL. The recent African genesis of humans. Scientific American. 1992; 266(4): 68-73. 10

[8] Jorde LB, Bamshad M, Rogers AR. Using mitochondrial and nuclear DNA markers to reconstruct human evolution. Bioessays. 1998; 20(2):126-36. [9] Anonymous. Ancient DNA and the Origin of Modern Humans. Science Week. Available online at http://scienceweek.com /2004/sb040910-3.htm. [10] Harpending H, Rogers A. Genetic perspectives on human origins and differentiation. Annu Rev Genomics Hum Genet. 2000; 1:361-85. [11] Anonymous. Anthropology: Neanderthals and the Colonization of Europe. Science Week. Available online at http://scienceweek.com/2004/sc041231-1.htm. [12] Groleau R. Tracing Ancestry with mtdna. Nova Online. Available online at http://www.pbs.org/wgbh/nova/ neanderthals/mtdna.html. [13] Takahata N. Molecular Clock: An Anti-neo-Darwinian Legacy. Genetics. 2007; 176(1): 1-6. [14] Templeton AR. Genetics and recent human evolution. Evolution Int J Org Evolution. 2007;61(7):1507-19. 11

[15] Paabo S. The Y Chromosome and the Origin of All of Us (Men). Science. 1995; 268(5214):1141-1142. 12

Appendix: Clinical disorders caused by mutations in mitochondrial DNA Modified from Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005; 6:389 40 Mitochondrial DNA Disorder Kearns Sayre syndrome CPEO Pearson syndrome MELAS MERRF NARP Clinical Presentation Progressive myopathy, ophthalmoplegia, cardiomyopathy Ophthalmoplegia Pancytopoenia, lactic acidosis Myopathy, encephalopathy lactic acidosis, stroke-like episodes mtdna genotype A single, largescale deletion A single, largescale deletion A single, largescale deletion 3243A>G; NOTE 3271T>C Individual mutations Myoclonic epilepsy, myopathy 8344A>G; 8356T>C Neuropathy, ataxia, retinitis pigmentosa Gene Several deleted genes Several deleted genes Several deleted genes TRNL1 ND1 and ND5 TRNK Inheritance Usually sporadic Usually sporadic Usually sporadic Maternal Maternal Maternal 8993T>G ATP6 Maternal MILS Progressive brain-stem disorder 8993T>C ATP6 Maternal MIDD Diabetes, deafness 3243A>G TRNL1 Maternal LHON Optic neuropathy 3460G>A ND1 Maternal 11778G>A ND4 Maternal 14484T>C ND6 Maternal Myopathy and diabetes Myopathy, weakness, diabetes 14709T>C TRNE Maternal Sensorineural hearing loss Deafness 1555A>G RNR1 Maternal Exercise intolerance Fatal, infantile encephalopathy; Leigh/Leigh-like syndrome Fatigue, muscle weakness Encephalopathy, lactic acidosis Individual mutations Individual mutations 10158T>C; 10191T>C TRNS1 CYB ND3 Maternal Sporadic Sporadic ATP6, ATPase 6; CPEO, chronic progressive external ophthalmoplegia; CYB, cytochrome b; LHON, Leber hereditary optic neuropathy; MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes; MERRF, myoclonic epilepsy and ragged-red fibres; MIDD, maternally-inherited diabetes and deafness; MILS, maternally-inherited Leigh syndrome; ND1,3 6, NADH dehydrogenase subunits 1,3 6; NARP, neurogenic weakness, ataxia and retinitis pigmentosa; RNR1, 12S ribosomal RNA; TRNE, TRNK, TRNL1, TRNS1, mitochondrial trnas. NOTE 3243A>G means that at base pair position 3243 in the mtdna sequence, nucleotide A was replaced by nucleotide G in a mutation, and so on. 13