Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Similar documents
Lent 2019 VECTOR CALCULUS EXAMPLE SHEET 1 G. Taylor

Lent 2012 VECTOR CALCULUS - EXAMPLES 1 Gareth Taylor. f (θ) ) 2 dθ.

Lent 2014 VECTOR CALCULUS - EXAMPLES 1 G. Taylor. A star means extra practice or can save until later, and not necessarily is harder. f (θ) ) 2 dθ.

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Lent 2017 VECTOR CALCULUS EXAMPLES 1 G. Taylor. f (θ) ) 2 dθ.

Lent 2018 VECTOR CALCULUS EXAMPLES 1 G. Taylor

Part IA. Vector Calculus. Year

MATH 332: Vector Analysis Summer 2005 Homework

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

MATH H53 : Final exam

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Look out for typos! Homework 1: Review of Calc 1 and 2. Problem 1. Sketch the graphs of the following functions:

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

Multiple Integrals and Vector Calculus: Synopsis

One side of each sheet is blank and may be used as scratch paper.

Exercises for Multivariable Differential Calculus XM521

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Chapter 7. Kinematics. 7.1 Tensor fields

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Lecture Notes Introduction to Vector Analysis MATH 332

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

EE2007: Engineering Mathematics II Vector Calculus

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Review problems for the final exam Calculus III Fall 2003

Electromagnetism HW 1 math review

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Vector Calculus, Maths II

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

ENGI Gradient, Divergence, Curl Page 5.01

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

ENGI Duffing s Equation Page 4.65

Week 2 Notes, Math 865, Tanveer

Curves in Parameterised curves and arc length (1.1), tangents and normals to curves in radius of curvature (1.8).

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

2.20 Fall 2018 Math Review

Line, surface and volume integrals

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

Before you begin read these instructions carefully:

Math 31CH - Spring Final Exam

Mathematics of Physics and Engineering II: Homework problems

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

EE2007: Engineering Mathematics II Vector Calculus

Review Sheet for the Final

Math Review for Exam 3

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

Final Review Worksheet

Derivatives and Integrals

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

Math 302 Outcome Statements Winter 2013

A Mathematical Trivium

Basic concepts to start Mechanics of Materials

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Print Your Name: Your Section:

Before you begin read these instructions carefully:

Notes on Vector Calculus

MULTIVARIABLE CALCULUS

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

McGill University April 20, Advanced Calculus for Engineers

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Chapter 1. Vector Algebra and Vector Space

Practice Problems for the Final Exam

MULTIVARIABLE INTEGRATION

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

TEST CODE: MIII (Objective type) 2010 SYLLABUS

Vectors, dot product, and cross product

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

ELE3310: Basic ElectroMagnetic Theory

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

Faculty of Engineering, Mathematics and Science School of Mathematics

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

e x3 dx dy. 0 y x 2, 0 x 1.

Before you begin read these instructions carefully.

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

Vector Calculus handout

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

Variational Principles

Merton College Maths for Physics Prelims August 29, 2008 HT I. Multiple Integrals

Gradient, Divergence and Curl in Curvilinear Coordinates

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

MATH 52 FINAL EXAM SOLUTIONS

Some elements of vector and tensor analysis and the Dirac δ-function

MAT 211 Final Exam. Spring Jennings. Show your work!

when viewed from the top, the objects should move as if interacting gravitationally

Getting started: CFD notation

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity

Chapter 3 - Vector Calculus

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

Transcription:

Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u 2π. Calculate its tangent vector dr/du at each point and hence find its total length. 2 In three dimensions, use suffix notation and the summation convention to show that (i) (a x) = a ; (ii) r n = nr n 2 x, where a is any constant vector and r = x. Given a function f(r) in two dimensions, use the Chain Rule to express its partial derivatives with respect to Cartesian coordinates (x, y) in terms of its partial derivatives with respect to polar coordinates (ρ, φ). From the relationship between the basis vectors in these coordinate systems, deduce that f = f ρ e ρ + f ρ φ e φ. 3 Evaluate explicitly each of the line integrals (x dx + y dy + z dz), (y dx + x dy + dz), (y dx x dy + e x+y dz), along (i) the straight line path from the origin to x = y = z =, and (ii) the parabolic path given parametrically by x = t, y = t, z = t 2 from t = 0 to t =. For which of these integrals do the two paths give the same results, and why? 4 Consider forces F = (3x 2 yz 2, 2x 3 yz, x 3 z 2 ) and G = (3x 2 y 2 z, 2x 3 yz, x 3 y 2 ). Compute the work done, given by the line integrals F dr and G dr, along the following paths, each of which consist of straight line segments joining the specified points: (i) (0, 0, 0) (,, ); (ii) (0, 0, 0) (0, 0, ) (0,, ) (,, ); (iii) (0, 0, 0) (, 0, 0) (,, 0) (,, ). 5 A curve C is given parametrically in Cartesian coordinates by r(t) = ( cos(sin nt) cos t, cos(sin nt) sin t, sin(sin nt) ), 0 t 2π, where n is some fixed integer. Using spherical polar coordinates, or otherwise, sketch or describe the curve. Show that ( H dr = 2π, where H(r) = y ) x 2 + y 2, x x 2 + y 2, 0 C and C is traversed in the direction of increasing t. Can H(r) be written as the gradient of a scalar function? Comment on your results.

6 Obtain the equation of the plane which is tangent to the surface z = 3x 2 y sin(πx/2) at the point x = y =. Take East to be in the direction (, 0, 0) and North to be (0,, 0). In which direction will a marble roll if placed on the surface at x =, y = 2? 7 Use the substitution x = r cos θ, y = 2r sin θ, to evaluate x 2 x 2 + 4y 2 da, where A is the region between the two ellipses x 2 + 4y 2 =, x 2 + 4y 2 = 4. A 8 The closed curve C in the z = 0 plane consists of the arc of the parabola y 2 = 4ax (a > 0) between the points (a, ±2a) and the straight line joining (a, 2a). The area enclosed by C is A. Show, by calculating the integrals explicitly, that where C is traversed anticlockwise. C (x 2 y dx + xy 2 dy) = A (y 2 x 2 ) da = 04 05 a4. 9 The region A is bounded by the segments x = 0, 0 y ; y = 0, 0 x ; y =, 0 x 3 4, and by an arc of the parabola y2 = 4( x). Consider a mapping into the (x, y) plane from the (u, v) plane defined by the transformation x = u 2 v 2, y = 2uv. Sketch A and also the two regions in the (u, v) plane which are mapped into it. Hence evaluate da (x 2 + y 2 ) /2. A 0 By using a suitable change of variables, calculate the volume within an ellipsoid x 2 a 2 + y2 b 2 + z2 c 2. A tetrahedron has vertices (0, 0, 0), (, 0, 0), (0,, 0) and (0, 0, ). Find the centre of volume, defined by x d. 2 A solid cone is bounded by the surface θ = α in spherical polar coordinates and the surface z = a. Its mass density is ρ 0 cos θ. By evaluating a volume integral find the mass of the cone. Comments to: B.C.Allanach@damtp.cam.ac.uk 2

Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet 2 A circular helix is given by r(u) = ( a cos u, a sin u, cu ). Calculate the tangent t, curvature κ, principal normal n, binormal b, and torsion τ. 2 Show that a curve in the plane, r(t) = ( x(t), y(t), 0 ), has curvature κ(t) = ẋÿ ẏẍ / ( ẋ 2 + ẏ 2 ) 3/2. Find the minimum and maximum curvature of the ellipse x 2 /a 2 + y 2 /b 2 = (a > b > 0). 3 Let ψ(x) be a scalar field and v(x) a vector field. Show, using index notation, that (ψv) = ( ψ) v + ψ v, (ψv) = ( ψ) v + ψ v. Evaluate (using index notation where necessary) the divergence and the curl of the following: where r = x, and a and b are fixed vectors. 4 Use suffix notation to show that r x, a(x b), a x, x/r 3, (u v) = u( v) + (v )u v( u) (u )v. for vector fields u and v. Show also that (u )u = ( 2 u2 ) u ( u). 5 Check, by calculating its curl, that the force field F = ( 3x 2 tan z y 2 e xy2 sin y, (cos y 2xy sin y) e xy2, x 3 sec 2 z ) is conservative. Find the most general scalar potential for F and hence, or otherwise, find the work done by the force as it acts on a particle moving from (0, 0, 0) to (, π/2, π/4). 6 erify that the vector field u = e x (x cos y + cos y y sin y) i + e x ( x sin y sin y y cos y) j is irrotational and express it as the gradient of a scalar field φ. Check that u is also solenoidal and show that it can be written as the curl of a vector field ψk, for some function ψ. 7 (a) The vector field B(x) is everywhere parallel to the normals to a family of surfaces f(x) = constant. Show that B ( B) = 0.

7 (b) The tangent vector at each point on a curve is parallel to a non-vanishing vector field H(x). Show that the curvature of the curve is given by H 3 H (H )H. 8 Consider the line integral C x 2 y dx + xy 2 dy for C a closed curve traversed anti-clockwise in the xy plane. (i) Evaluate this integral when C is a circle with radius R and centre the origin. Use Green s Theorem to relate the results for R = b and R = a to an area integral over the region a 2 x 2 +y 2 b 2, and calculate the area integral directly. (ii) Now suppose that C is the boundary of a square, with centre the origin, and sides of length l. Show that the line integral is independent of the orientation of the square in the plane. 9 erify Stokes s Theorem for the hemispherical surface r =, z 0, and the vector field F(r) = ( y, x, z ). 0 Let F(r) = ( x 3 +3y+z 2, y 3, x 2 +y 2 +3z 2 ), and let S be the open surface z = x 2 + y 2, 0 z. Use the divergence theorem (and cylindrical polar coordinates) to evaluate S F ds. erify your result by calculating the integral directly. [You should find that the vector area element is ds = ( 2ρ cos φ, 2ρ sin φ, ) ρ dρ dφ.] By applying the divergence theorem to the vector field a A, where a is an arbitrary constant vector and A(x) is a vector field, show that A d = A ds, where the surface S encloses the volume. erify this result when S is the sphere x = R and A = (z, 0, 0) in Cartesian coordinates. 2 By applying Stokes s theorem to the vector field a F, where a is an arbitrary constant vector and F(x) is a vector field, show that dx F = (ds ) F, C S where the curve C bounds the open surface S. erify this result when C is the unit square in the xy plane with opposite vertices at (0, 0, 0) and (,, 0) and F(x) = x. S Comments to: B.C.Allanach@damtp.cam.ac.uk 2

Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet 3 (i) Write down the operator in Cartesian coordinates and in spherical polars. Calculate the gradient of ψ = Ez = Er cos θ in both coordinate systems (E is a constant) and check that your answers agree. (ii) Apply the standard formulas in Cartesian, cylindrical, and spherical polar coordinates to calculate, in three ways, the curl of the following vector field (with B a constant): A = 2 B( y e x + x e y ) = 2 Bρ e φ = 2 Br sin θ e φ. 2 In cylindrical polar coordinates, = e ρ ρ + e φ ρ φ + e z z and e ρ φ = e φ, e φ φ = e ρ, while all other derivatives of the basis vectors are zero. Derive expressions for A and A, where A = A ρ e ρ + A φ e φ + A z e z, and also for 2 ψ, where ψ is a scalar field. 3 The vector field B(x) is defined in cylindrical polar coordinates ρ, φ, z by B(x) = ρ e φ, ρ 0. Calculate B using the formula for curl in cylindrical polars. Evaluate C B dx, where C is the circle z = 0, ρ = and 0 φ 2π. Is your answer consistent with Stokes s Theorem? 4 The scalar field ϕ(r) depends only on r = x, where x is the position vector in three dimensions. Use Cartesian coordinates, index notation, and the chain rule to show that ϕ = ϕ (r) x r, 2 ϕ = ϕ (r) + 2 r ϕ (r). Find the solution of 2 ϕ = which is defined on the region r a and which satisfies ϕ(a) =. 5 (a) Using Cartesian coordinates x, y, find all solutions of Laplace s equation in two dimensions of the form ϕ(x, y) = f(x)e αy with α a constant. Hence find a solution on the region 0 x a and y 0 with boundary conditions: ϕ(0, y) = ϕ(a, y) = 0, ϕ(x, 0) = λ sin(πx/a), ϕ 0 as y (λ a const). (b) Using the formula for 2 in polar coordinates r, θ, verify that Laplace s equation in the plane has solutions ϕ(r, θ) = A r α cos βθ, if α and β are related appropriately. Hence find solutions on the following regions, with the given boundary conditions (λ a const): (i) r a, ϕ(a, θ) = λ cos θ ; (ii) r a, ϕ(a, θ) = λ cos θ, ϕ 0 as r ; ϕ (iii) a r b, (a, θ) = 0, ϕ(b, θ) = λ cos 2θ. n 6 Consider a complex-valued function f = ϕ(x, y) + iψ(x, y) satisfying f/ z = 0, where / z = /x + i/y. Show that 2 ϕ = 2 ψ = 0. Show also that a curve on which ϕ is constant is orthogonal to a curve on which ψ is constant at a point where they intersect. Find ϕ and ψ when f = ze z, where z = x + iy, and compare with question 6 on Sheet 2.

7 Use Gauss s flux method to find the gravitational field g(r) due to a spherical shell of matter with density 0 for 0 r a, ρ(r) = ρ 0 r/a for a < r < b, 0 for r b. Now find the gravitational potential ϕ(r) directly from Poisson s equation by writing down the general, spherically symmetric solution to Laplace s equation in each of the intervals 0 < r < a, a < r < b and r > b, and adding a particular integral where necessary. Assume that ϕ is not singular at the origin, and that ϕ and ϕ are continuous at r = a and r = b. Check that this solution gives the same result for the gravitational field. 8 From an integral theorem, derive (one of Green s Identities): ( ( ψ 2 ϕ ϕ 2 ψ ) d = ψ ϕ ) n ϕψ ds. n 9 Let ρ(x) be a function on a volume and f(x) a function on its boundary S =. Show that a solution ϕ(x) to the following problem is unique: 2 ϕ ϕ = ρ on, ϕ n = f on S. 0 The functions u(x) and v(x) on satisfy 2 u = 0 on and v = 0 on. Show that u v d = 0. Now if w(x) is a function on with u = w on, show, by considering v = w u, that w 2 d u 2 d. Show that there is at most one solution ϕ(x) to Laplace s equation in a volume with the boundary condition given in terms of functions f(x) and g(x) by g ϕ + ϕ = f on, n assuming g(x) 0 on. Find a non-zero solution of Laplace s equation on x which satisfies the boundary condition above with f = 0 and g = on x =. 2 Maxwell s equations for electric and magnetic fields E(x, t) and B(x, t) are E = ρ/ǫ 0, E = B/t, B = 0, B = µ 0 j + ǫ 0 µ 0 E/t, where ρ(x, t) and j(x, t) are the charge density and current, and ǫ 0 and µ 0 are constants. Show that these imply the conservation equation j = ρ/t. Show also that if j is zero then U = ( 2 ǫ0 E 2 + µ ) 0 B2 and P = µ 0 E B satisfy P = U/t. Comments to: B.C.Allanach@damtp.cam.ac.uk 2

Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet 4 The current J i due to an electric field E i is given by J i = σ ij E j, where σ ij is the conductivity tensor. In a certain coordinate system, 2 (σ ij ) = 2. 2 Show that there is a direction along which no current flows, and find the direction(s) along which the current flow is largest, for an electric field of fixed magnitude. 2 Given vectors u = (, 0, ), v = (0,, ) and w = (,, 0), find all components of the second-rank and third-rank tensors defined by T ij = u i v j + v i w j ; S ijk = u i v j w k v i u j w k + v i w j u k w i v j u k + w i u j v k u i w j v k. 3 Using the transformation law for a second-rank tensor T ij, show that the quantities α = T ii, β = T ij T ji, γ = T ij T jk T ki are the same in all Cartesian coordinate systems. If T ij is diagonal in some coordinate system, express the quantities above in terms of its eigenvalues. Hence deduce that the eigenvalues are roots of the cubic equation λ 3 αλ 2 + 2 (α2 β)λ 6 (α3 3αβ + 2γ) = 0. 4 If u i (x) is a vector field, show that u i /x j transforms as a second-rank tensor. If σ ij (x) is a second-rank tensor field, show that σ ij /x j transforms as a vector. 5 The fields E(x, t) and B(x, t) obey Maxwell s equations with zero charge and current. Show that the Poynting vector P = µ 0 E B satisfies P i c 2 t + T ij x j = 0 where T ij = 2 ǫ 0 δ ij ( E k E k + c 2 B k B k ) ǫ 0 ( E i E j + c 2 B i B j ). 6 The velocity field u(x, t) of an inviscid compressible gas obeys ρ t + (ρu) = 0 and ρ ( u t + (u )u ) where ρ(x, t) is the density and p(x, t) is the pressure. Show that = p t ( 2 ρu2 ) + x i ( 2 ρu2 u i + pu i ) = p u and t ( ρu i ) + x j ( t ij ) = 0 for a suitable symmetric tensor t ij, to be determined.

7 The components of a second-rank tensor are given by a matrix A. Show that Ax = αx + ω x + Bx for all x, for some scalar α, vector ω, and symmetric traceless matrix B. Find α, ω and B when 2 3 A = 4 5 6. 2 3 8 (a) A tensor of rank 3 satisfies T ijk = T jik and T ijk = T ikj. Show that T ijk = 0. (b) A tensor of rank 4 satisfies T jikl = T ijkl = T ijlk and T ijij = 0. Show that T ijkl = ε ijp ε klq S pq, where S pq = T rqrp, 9 A cuboid of uniform density and mass M has sides of lengths 2a, 2b and 2c. Find the inertia tensor about its centre, with respect to a coordinate system of your choice. A cube with sides of length 2a has uniform density, mass M, and is rotating with angular velocity ω about an axis which passes through its centre and through a pair of opposite vertices. What is its angular momentum? 0 Evaluate the following integrals over all space, where γ > 0 and r 2 = x p x p : (i) r 3 e γr2 x i x j d ; (ii) r 5 e γr2 x i x j x k d. A tensor has components T ij with respect to Cartesian coordinates x i. If the tensor is invariant under arbitrary rotations around the x 3 -axis, show that it must have the form α ω 0 (T ij ) = ω α 0. 0 0 β 2 In linear elasticity, the symmetric second-rank stress tensor σ ij depends on the symmetric second-rank strain tensor e kl according to σ ij = c ijkl e kl. Explain why c ijkl must be a fourthrank tensor, assuming c ijkl = c ijlk. For an isotropic medium, use the most general possible form for c ijkl (which you may quote) to show that σ ij = λδ ij e kk + 2µe ij, where λ and µ are scalars. Invert this equation to express e ij in terms of σ ij, assuming µ 0 and 3λ 2µ. Explain why the principal axes of σ ij and e ij coincide. The elastic energy density resulting from a deformation of the medium is E = 2 e ijσ ij. Show that E is strictly positive for any non-zero strain e ij provided µ > 0 and λ > 2µ/3. Comments to: B.C.Allanach@damtp.cam.ac.uk 2