Astr 1050 Mon. Jan. 31, 2017

Similar documents
Chapter 3: Cycles of the Sky

Observing the Universe for Yourself

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself

A User s Guide to the Sky

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.

Eclipses September 12th, 2013

Introduction to Astronomy

Seasons. What causes the seasons?

PHYS 160 Astronomy Test #1 Fall 2017 Version B

Astr 2310 Tues. Feb. 2, 2016

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ

BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

a. 0.1 AU b. 10 AU c light years d light years

Discovering the Night Sky

Discovering the Night Sky

Dr. Tariq Al-Abdullah

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Astronomy 291. Professor Bradley M. Peterson

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Name and Student ID Section Day/Time:

Today in Space News: Earth s oldest rock found on the Moon.

Motions of the Earth

The Sun-Earth-Moon System

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

ASTR 1P01 Test 1, May 2018 Page 1 BROCK UNIVERSITY. Test 1: Spring 2018 Number of pages: 10 Course: ASTR 1P01, Section 1 Number of students: 598

lightyears observable universe astronomical unit po- laris perihelion Milky Way

Astronomy 103: First Exam

2.1 Patterns in the Night Sky

Astronomy 115 Section 4 Week 2. Adam Fries SF State

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Name: Earth and Space Assessment Study Guide. Assessment Date : Term Rotation Revolution

The Cause of the Seasons

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 The Cycles of the Moon

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic

Astronomy Regents Review

Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

Planets in the Sky ASTR 101 2/16/2018

Tools of Astronomy Tools of Astronomy

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting

Summary Sheet #1 for Astronomy Main Lesson

Motions in the Sky. Stars Planets Sun Moon. Photos - APOD. Motions in the Sky - I. Intro to Solar System

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

Homework 1 (from text) Latest Deep Impact Results: 2. Discovering the Universe for Yourself.

SAMPLE First Midterm Exam

Astr 1050 Mon. Feb. 6, 2017

Welcome back. Scale. Week 2 Updates. PHYS 1302 Astronomy of the Solar System

Introduction To Modern Astronomy I: Solar System

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month

The Earth, Moon, and Sky. Lecture 5 1/31/2017

Lecture 2 Motions in the Sky September 10, 2018

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

Name: Exam 1, 9/30/05

Practice Questions: Seasons #1

Full Moon. Phases of the Moon

Introduction To Modern Astronomy II

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

3. a. In the figure below, indicate the direction of the Sun with an arrow.

SPI Use data to draw conclusions about the major components of the universe.

Day, Night, Year, and Seasons

Time, Seasons, and Tides

CHAPTER 2 A USER'S GUIDE TO THE SKY

Using Angles. Looking at the Night Sky. Rising and Setting Stars. Nightly Motion of the Stars. Nightly Motion of the Stars

Academic Year Second Term. Science Revision Sheet. Grade

2. Knowing the Heavens

Chapter 3 Cycles of the Moon

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

A. the spinning of Earth on its axis B. the path of the Sun around Earth

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

Earth is rotating on its own axis

Dive into Saturn.

Earth rotates on a tilted axis and orbits the Sun.

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

Chapter 17 Solar System

Final key scientist in this story: Galileo Galilei

Discovering the Universe for Yourself

UNIT 3: EARTH S MOTIONS

The Cosmic Perspective, 7e (Bennett et al.) Chapter 2 Discovering the Universe for Yourself. 2.1 Multiple-Choice Questions

Name Regents Review Packet #2 Date

Transcription:

Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on Mastering Astronomy (Due Monday)

Start Chapter 3: Cycles in the Sky Motion of the Sun through the year Plot position of Sun relative to stars, over one full year. Complicated by fact you can t see Sun and stars at same time. Once you have full map of sky, you can work this out by seeing what stars are opposite sun 12 hours later. (From our Text: Horizons, by Seeds) Path of sun around the celestial sphere is called the ECLIPTIC Set of constellations through which it passes is called the ZODIAC

Plotting the Ecliptic on the Celestial Sphere The ecliptic is tilted relative to the celestial equator by 23.5 o (From our Text: Horizons, by Seeds) The sun is at the northernmost point on the ecliptic on June 22 a time and location called the SUMMER SOLSTICE The Sun is at the southernmost point on the ecliptic on Dec. 22 a time and location called the WINTER SOLSTICE The Sun just crossing the equator going N on March 21 a time and location called the VERNAL EQUINOX The Sun is just crossing the equator going S on Sept. 22 a time and location called the AUTUMNAL EQUINOX

Consider the Sun s daily motion thru the year Key point: Consider sun fixed at a given spot on ecliptic over the period of one day. (From our Text: Horizons, by Seeds) At the Vernal Equinox Sun is on the celestial equator. At the Autumnal Equinox the Sun is also on the celestial equator. It rises due E, sets due W It is up exactly 12 hours At the Summer solstice Sun is a northern star. It rises N of E, sets N of W It is up more than 12 hours At the Winter Solstice it is a southern star It rises S of E, sets S of W It is up less than 12 hours

How the Sun s location affects the seasons: The angle of the sun s rays: In the summer it passes closer to overhead and therefore shines more directly on the summer hemisphere The time the Sun is up In the summer it spends more than 12 hours above the horizon. The seasons are NOT due to the slightly elliptical shape of the Earth s orbit and the fact that it is slightly closer to the Sun during part of the year. Test of that hypothesis: If the distance were the cause, then when it was summer in the northern hemisphere, what season would it be in the southern hemisphere? SUN (From our Text: Horizons, by Seeds)

Special Locations on the Earth How close to the North Pole do we need to go before the Summer Solstice sun becomes a circumpolar star and is above the horizon all day? Within 23.5 o of the pole: THE ARCTIC CIRCLE How close to the equator do we need to get before the Summer Solstice sun passes directly rather than somewhat to the south: Within 23.5 o of the equator: The TROPICS (From our Text: Horizons, by Seeds)

Effect of Elliptical Orbit on Climate Seasons almost entirely due to TILT of Earth Seasons opposite (not the same) in N & S Hemispheres Earth s orbit slightly elliptical Slightly closer to the sun in N. Hemisphere Winter But this changes as tilt precesses in 26,000 yr cycle Expect N. Hemisphere winter to be slightly milder Positions of continents and oceans actually more important Effect is important for Mars -- more elliptical orbit Cyclic variations in climate as tilt precesses (and tilt and ellipticity also gets slightly larger and smaller VERY IMPORTANT TOPIC (Re: Global Warming)

Why are the planets found near the ecliptic? The ecliptic is defined by the plane of the Earth s orbit If the other planets are always found near the ecliptic, they must always be located near the plane of the Earth s orbit at most slightly above or below it. The planes of their orbits around the sun must almost match the Earth s Their slight motions above and below the ecliptic means the match isn t exact. (Their orbits are slightly tilted relative to ours.) From our text: Horizons, by Seeds

Superior vs. Inferior Planets Superior planets (Mars, Jupiter, Saturn, Uranus, Neptune, Pluto) have orbits larger than the earth and can appear opposite the sun in the sky. They can be up at midnight. Never show phases. Inferior planets (Mercury, Venus) have orbits smaller than earth and can never appear far from the Sun. They form morning stars or evening stars visible a little before sunrise or after sunset. Show phases. From our text: Horizons, by Seeds

Inferior Planets Inferior planets (Mercury, Venus) have orbits smaller than earth and can never appear far from the Sun. They form morning stars or evening stars visible a little before sunrise or after sunset. From our text: Horizons, by Seeds

Lunar/Solar Tides (exaggerated!) What are tides? More complex than what you see on Baywatch! Gravity from the moon and sun pull on Earth. Gravity weakens with distance, so the pull is strongest on the near side, weakest on the far side. The sun is more massive than the moon, but farther away, so its tidal effect is smaller. Actual flow of water around the world is very complex and not fully understood! From the text, Horizons by Seeds

More on tides 1. Tidal friction leads to energy loss. 2. Earth s rotation drags the tidal bulge forward, helping pull the moon (its orbit is increasing in radius). Tidal forces will appear later in the semester in other astrophysical contexts. Watch for them. 3. The energy comes from Earth s rotation, which is slowing. 4. The extraction of energy from the moon s rotation led to phase-locking.

From our text: Horizons, by Seeds Angular sizes Quite often we will need to find linear size of some object, given its distance and its angular size angular diameter 206265 arcsec = linear diameter distance Note the book leaves out the units of arcsec. Do not make that mistake yourself. An example different than the one in the book: How large is the sun? The angular diameter of the sun is about 0.5 0. To convert that to arcseconds use: 0.5 deg 60 arcmin/deg 60 arcsec/arcmin = 1800 arcsec The sun is 1.5 10 8 km away (= 1 astronomical unit). So linear diameter = distance angular diameter 206265 arcsec = 1.5 10 8 km 1800 arcsec 206265 arcsec = 1.3 10 6 km

The Angular Size of the Moon How big is the moon? Have you ever seen the moon near the horizon? Has it looked huge, much larger than when it is high in the sky? Last full moon was Aug. 29. Next one is Sept. 27. Have a look. After we do phases (next time) will know where and when to look!

Shadows and Eclipses Both the Earth and the Moon will cast shadows. If the Sun, Earth, and Moon are all lined up, then the shadow from one can fall on the other. Because the Earth is ~4 times bigger, it will cast a shadow 4 times bigger. From our text: Horizons, by Seeds Umbra Portion of shadow where it is completely dark. (for a person in the shadow, the light bulb would be completely blocked out) Penumbra Portion of shadow where it is only partially dark. (for a person in the shadow, the light bulb would be partially blocked out) (To remember the names, think of ultimate and penultimate )

Types of eclipses Lunar Eclipse Solar Eclipse We view the illuminated object and watch it go dark. Everyone on one side of the Earth can see the Moon so a given lunar eclipse is visible to many people. We view the illuminating object (the Sun) and see it blocked out. Only a few people are in the right place to be in the shadow. It is coincidence that the umbra just barely reaches earth. From our text: Horizons, by Seeds

Solar eclipses If you are outside the penumbra you see the whole sun. If you are in the penumbra you see only part of the sun. If you are in the umbra you cannot see any of the sun. The fact that the moon is just barely big enough to block out the sun results from a coincidence: The sun is 400 times bigger than the moon, but also almost exactly 400 times further away. The orbit of the moon is elliptical. At perigee it can block out the full sun At apogee it isn t quite big enough, giving an annular eclipse. From our text: Horizons, by Seeds

Eclipse Facts Longest possible total eclipse is only 7.5 minutes. Average is only 2-3 minutes. Shadow sweeps across Earth @ 1000 mph! (Compare with scene in The Mummy Returns!) Birds will go to roost in a total eclipse. The temperature noticeably drops. Totally predictable (even in ancient times, e.g., the Saros Cycle, eclipse pattern repeats every 6585.3 days or 18 years, 11 1/3 days).

Eclipses and Nodes From our textbook, Horizons by Seeds.

Variations in Solar Eclipses Elliptical orbits mean angular size variation. Total Solar Eclipse Diamond-Ring Effect Annular Eclipse

Phases of the Moon and its orbit around the Earth (1). 1. Everything (almost) in the solar system rotates or orbits counterclockwise, as seen from the North. 2. The illumination of the Earth and the moon will be almost the same, since the sun is so far away that both receive light from (almost) the same direction. 3. It takes 4 weeks for the moon to complete an orbit of the earth. 4. The moon is phase-locked. In other words, we always see the same face, although the illumination pattern we see changes. How long is a lunar day? From our text: Horizons, by Seeds

Phases of the Moon and its orbit around the Earth (2). From our text: Horizons, by Seeds Suppose you are asked when the first quarter moon will rise, when it will be overhead, and when it will set. Which side will be illuminated? If it is first quarter, it has moved ¼ revolution around from the new moon position, so it is at the top of the diagram. For a person standing on the earth, the moon would rise at noon, be overhead at 6 pm, and would set at midnight. It has to be the side towards the sun which is illuminated. Imagine yourself lying on the ground at 6 pm, head north, right arm towards the west. That west (right) arm points towards the sun. That must be the side which is illuminated.

Reading for Next Time Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Phases of the moon Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on Mastering Astronomy (Due Monday)