CONTENTS Real chemistry e ects Scramjet operating envelope Problems

Similar documents
Contents. Preface... xvii

6.1 Propellor e ciency

The Turbofan cycle. Chapter Turbofan thrust

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Propulsion Thermodynamics

The ramjet cycle. Chapter Ramjet flow field

Chapter 1 Introduction and Basic Concepts

Review of Fundamentals - Fluid Mechanics

Thermal Energy Final Exam Fall 2002

Applied Thermodynamics - II

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

3. Write a detailed note on the following thrust vector control methods:

High Speed Propulsion

GAS DYNAMICS AND JET PROPULSION

Parametric Cycle Analysis of Real Turbofan

AEROSPACE ENGINEERING

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion

Richard Nakka's Experimental Rocketry Web Site

Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras. Lecture 01 Introduction

Preface Acknowledgments Nomenclature

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution:

Multistage Rockets. Chapter Notation

CHAPTER 3. Classification of Propulsion Systems

ME 6139: High Speed Aerodynamics

Rocket Propulsion. Combustion chamber Throat Nozzle

Quiz 2 May 18, Statement True False 1. For a turbojet, a high. gives a high thermodynamic efficiency at any compression ratio.

AAE COMBUSTION AND THERMOCHEMISTRY

ME6604-GAS DYNAMICS AND JET PROPULSION. Prepared by C.Thirugnanam AP/MECH TWO MARK QUESTIONS AND ANSWERS UNIT I ISENTROPIC FLOW

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

Technology of Rocket

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust,

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

UNIFIED ENGINEERING Fall 2003 Ian A. Waitz

PART 2 POWER AND PROPULSION CYCLES

ME 440 Aerospace Engineering Fundamentals

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist

Rocket Thermodynamics

PARAMETRIC AND PERFORMANCE ANALYSIS OF A HYBRID PULSE DETONATION/TURBOFAN ENGINE SIVARAI AMITH KUMAR

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR

ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

SECOND ENGINEER REG. III/2 APPLIED HEAT

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

Application of Steady and Unsteady Detonation Waves to Propulsion

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turn Performance of an Air-Breathing Hypersonic Vehicle

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams

ANALYSIS OF PULSE DETONATION TURBOJET ENGINES RONNACHAI VUTTHIVITHAYARAK. Presented to the Faculty of the Graduate School of

STUDY OF AN AIR-BREATHING ENGINE FOR HYPERSONIC FLIGHT

A Thermodynamic Analysis of a Turbojet Engine ME 2334 Course Project

Design and Optimization of De Lavel Nozzle to Prevent Shock Induced Flow Separation

Lecture 43: Aircraft Propulsion

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

Turbine D P. Example 5.6 Air-standard Brayton cycle thermal efficiency

Multistage Rocket Performance Project Two

Applied Gas Dynamics Flow With Friction and Heat Transfer

Modelling Nozzle throat as Rocket exhaust

SARDAR RAJA COLLEGES

Unified Propulsion Quiz May 7, 2004

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

Continuous Differentiation of Complex Systems Applied to a Hypersonic Vehicle

Rocket Propulsion. Reacting Flow Issues

One-Dimensional Isentropic Flow

Preliminary Design of a Turbofan Engine

Rocket Dynamics. Forces on the Rocket

Summer AS5150# MTech Project (summer) **

Lecture 44: Review Thermodynamics I

IV. Rocket Propulsion Systems. A. Overview

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Rocket Propulsion Overview

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

Thermal Energy

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Fundamentals of Combustion

Reacting Gas Mixtures

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

7. Development of the 2nd Law

Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics.

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

ÂF = Ù. ı s. Ù u(ru) nds PRODUCTION OF THRUST. For x-component of vectors:

RPA: Tool for Liquid Propellant Rocket Engine Analysis C++ Implementation

Civil aeroengines for subsonic cruise have convergent nozzles (page 83):

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

CLASS Fourth Units (Second part)

Transcription:

Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle............................. 1-8 1.2.2 The Brayton cycle............................ 1-11 1.3 The standard atmosphere............................ 1-14 1.4 Problems..................................... 1-15 2 Engine performance parameters 2-1 2.1 The definition of thrust............................. 2-1 2.2 Energy balance.................................. 2-6 2.3 Capture area................................... 2-8 2.4 Overall e ciency................................. 2-8 2.5 Breguet aircraft range equation......................... 2-10 2.6 Propulsive e ciency............................... 2-11 2.7 Thermal e ciency................................ 2-11 2.8 Specific impulse, specific fuel consumption................... 2-13 2.9 Dimensionless forms............................... 2-14 2.10 Engine notation.................................. 2-15 2.11 Problems..................................... 2-20 3 The ramjet cycle 3-1 3.1 Ramjet flow field................................. 3-1 3.2 The role of the nozzle.............................. 3-9 3.3 The ideal ramjet cycle.............................. 3-10 3.4 Optimization of the ideal ramjet cycle..................... 3-14 3.5 The non-ideal ramjet............................... 3-16 3.6 Ramjet control.................................. 3-16 3.7 Example - Ramjet with un-started inlet.................... 3-18 3.8 Very high speed flight - scramjets........................ 3-28 1

CONTENTS 2 3.8.1 Real chemistry e ects.......................... 3-32 3.8.2 Scramjet operating envelope....................... 3-32 3.9 Problems..................................... 3-35 4 The Turbojet cycle 4-1 4.1 Thermal e ciency of the ideal turbojet.................... 4-1 4.2 Thrust of an ideal turbojet engine....................... 4-4 4.3 Maximum thrust ideal turbojet......................... 4-9 4.4 Turbine-nozzle mass flow matching....................... 4-11 4.5 Free-stream-compressor inlet flow matching.................. 4-12 4.6 Compressor-turbine mass flow matching.................... 4-13 4.7 Summary - engine matching conditions..................... 4-14 4.7.1 Example - turbojet in supersonic flow with an inlet shock...... 4-14 4.8 How does a turbojet work?........................... 4-19 4.8.1 The compressor operating line..................... 4-20 4.8.2 The gas generator............................ 4-21 4.8.3 Corrected weight flow is related to f (M 2 )................ 4-22 4.8.4 A simple model of compressor blade aerodynamics.......... 4-24 4.8.5 Turbojet engine control......................... 4-29 4.8.6 Inlet operation.............................. 4-29 4.9 The non-ideal turbojet cycle........................... 4-33 4.9.1 The polytropic e ciency of compression................ 4-34 4.10 The polytropic e ciency of expansion..................... 4-37 4.11 The e ect of afterburning............................ 4-38 4.12 Nozzle operation................................. 4-39 4.13 Problems..................................... 4-40 5 The Turbofan cycle 5-1 5.1 Turbofan thrust.................................. 5-1 5.2 The ideal turbofan cycle............................. 5-3 5.2.1 The fan bypass stream.......................... 5-4 5.2.2 The core stream............................. 5-5 5.2.3 Turbine-compressor-fan matching.................... 5-6 5.2.4 The fuel/air ratio............................. 5-7 5.3 Maximum specific impulse ideal turbofan................... 5-7 5.4 Turbofan thermal e ciency........................... 5-9 5.4.1 Thermal e ciency of the ideal turbofan................ 5-12 5.5 The non-ideal turbofan.............................. 5-12 5.5.1 Non-ideal fan stream........................... 5-13 5.5.2 Non-ideal core stream.......................... 5-14 5.5.3 Maximum specific impulse non-ideal cycle............... 5-15

CONTENTS 3 5.6 Problems..................................... 5-17 6 The Turboprop cycle 6-1 6.1 Propellor e ciency................................ 6-1 6.2 Work output coe cient............................. 6-6 6.3 Power balance................................... 6-8 6.4 The ideal turboprop............................... 6-8 6.4.1 Optimization of the ideal turboprop cycle............... 6-10 6.4.2 Compression for maximum thrust of an ideal turboprop....... 6-11 6.5 Turbine sizing for the non-ideal turboprop................... 6-12 6.6 Problems..................................... 6-13 7 Rocket performance 7-1 7.1 Thrust....................................... 7-1 7.2 Momentum balance in center-of-mass coordinates............... 7-4 7.3 E ective exhaust velocity............................ 7-9 7.4 C e ciency.................................... 7-11 7.5 Specific impulse.................................. 7-11 7.6 Chamber pressure................................ 7-12 7.7 Combustion chamber stagnation pressure drop................ 7-14 7.8 The Tsiolkovsky rocket equation........................ 7-15 7.9 Reaching orbit.................................. 7-17 7.10 The thrust coe cient............................... 7-18 7.11 Problems..................................... 7-20 8 Multistage Rockets 8-1 8.1 Notation...................................... 8-1 8.2 The variational problem............................. 8-3 8.3 Example - exhaust velocity and structural coe cient the same for all stages 8-6 8.4 Problems..................................... 8-7 9 Thermodynamics of reacting mixtures 9-1 9.1 Introduction.................................... 9-1 9.2 Ideal mixtures................................... 9-2 9.3 Criterion for equilibrium............................. 9-5 9.4 The entropy of mixing.............................. 9-5 9.5 Entropy of an ideal mixture of condensed species............... 9-10 9.6 Thermodynamics of incompressible liquids and solids............. 9-12 9.7 Enthalpy..................................... 9-14 9.7.1 Enthalpy of formation and the reference reaction........... 9-15 9.8 Condensed phase equilibrium.......................... 9-17

CONTENTS 4 9.9 Chemical equilibrium, the method of element potentials........... 9-22 9.9.1 Rescaled equations............................ 9-28 9.10 Example - combustion of carbon monoxide................... 9-31 9.10.1 CO Combustion at 2975.34K using Gibbs free energy of formation. 9-36 9.10.2 Adiabatic flame temperature...................... 9-38 9.10.3 Isentropic expansion........................... 9-40 9.10.4 Nozzle expansion............................. 9-41 9.10.5 Fuel-rich combustion, multiple phases................. 9-42 9.11 Rocket performance using CEA......................... 9-45 9.12 Problems..................................... 9-45 10 Solid Rockets 10-1 10.1 Introduction.................................... 10-1 10.2 Combustion chamber pressure.......................... 10-2 10.3 Dynamic analysis................................. 10-4 10.3.1 Exact solution.............................. 10-6 10.3.2 Chamber pressure history........................ 10-8 10.4 Problems..................................... 10-9 11 Hybrid Rockets 11-1 11.1 Conventional bi-propellant systems....................... 11-1 11.2 The hybrid rocket idea.............................. 11-3 11.2.1 The fuel regression rate law....................... 11-4 11.2.2 Specific impulse.............................. 11-7 11.2.3 The problem of low regression rate................... 11-7 11.3 Historical perspective.............................. 11-9 11.4 High regression rate fuels............................ 11-12 11.5 The O/F shift.................................. 11-15 11.6 Scale-up tests................................... 11-16 11.7 Regression rate analysis............................. 11-17 11.7.1 Regression rate with the e ect of fuel mass flow neglected....... 11-17 11.7.2 Exact solution of the coupled space-time problem for n = 1/2.... 11-18 11.7.3 Similarity solution of the coupled space-time problem for general n and m.................................... 11-19 11.7.4 Numerical solution for the coupled space-time problem, for general n and m and variable oxidizer flow rate................. 11-20 11.7.5 Example - Numerical solution of the coupled problem for a long burning, midsize motor as presented in reference [1]............. 11-22 11.7.6 Sensitivity of the coupled space-time problem to small changes in a, n, and m.................................. 11-24 11.8 Problems..................................... 11-26

CONTENTS 5 A Thermochemistry A-1 A.1 Thermochemical tables.............................. A-1 A.2 Standard pressure................................ A-2 A.2.1 What about pressures other than standard?.............. A-4 A.2.2 Equilibrium between phases....................... A-5 A.2.3 Reference temperature.......................... A-7 A.3 Reference reaction and reference state for elements.............. A-7 A.4 The heat of formation.............................. A-8 A.4.1 Example - heat of formation of monatomic hydrogen at 298.15 K and at 1000 K.................................. A-9 A.4.2 Example - heat of formation of gaseous and liquid water....... A-10 A.4.3 Example - combustion of hydrogen and oxygen diluted by nitrogen. A-13 A.4.4 Example - combustion of methane................... A-14 A.4.5 Example - the heating value of JP-4.................. A-16 A.5 Heat capacity................................... A-17 A.6 Chemical bonds and the heat of formation................... A-20 A.6.1 Potential energy of two hydrogen atoms................ A-20 A.6.2 Atomic hydrogen............................. A-22 A.6.3 Diatomic hydrogen............................ A-23 A.7 Heats of formation computed from bond energies............... A-26 A.8 References..................................... A-28 B Selected JANAF data B-1