Edge Plasma Energy and Particle Fluxes in Divertor Tokamaks

Similar documents
Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance

EFDA European Fusion Development Agreement - Close Support Unit - Garching

Divertor Requirements and Performance in ITER

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

ITER. Power and Particle Exhaust in ITER ITER

Power Deposition Measurements in Deuterium and Helium Discharges in JET MKIIGB Divertor by IR-Thermography

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET

Correlations of ELM frequency with pedestal plasma characteristics

Power Exhaust on JET: An Overview of Dedicated Experiments

Scaling of divertor heat flux profile widths in DIII-D

Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Steady State and Transient Power Handling in JET

L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

Scaling of divertor heat flux profile widths in DIII-D

Divertor power and particle fluxes between and during type-i ELMs in ASDEX Upgrade

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Characteristics of the H-mode H and Extrapolation to ITER

Divertor Heat Flux Reduction and Detachment in NSTX

Experimental results and modelling of ASDEX Upgrade partial detachment

Modelling of JT-60U Detached Divertor Plasma using SONIC code

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS

Edge Impurity Dynamics During an ELM Cycle in DIII D

Erosion and Confinement of Tungsten in ASDEX Upgrade

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

Evolution of the pedestal on MAST and the implications for ELM power loadings

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

Confinement and edge studies towards low ρ* and ν* at JET

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.

Multi-machine comparisons of divertor heat flux mitigation by radiative cooling with nitrogen

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas

Development of an experimental profile database for the scrape-off layer

Influence of Beta, Shape and Rotation on the H-mode Pedestal Height

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod

Triggering Mechanisms for Transport Barriers

Progress in the ITER Physics Basis

ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Spatio-temporal investigations on the triggering of pellet induced ELMs

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

ASCOT simulations of electron energy distribution at the divertor targets in an ASDEX Upgrade H-mode discharge

Predicting the Rotation Profile in ITER

ELMs and Constraints on the H-Mode Pedestal:

Effect of Variation in Equilibrium Shape on ELMing H Mode Performance in DIII D Diverted Plasmas

Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors

Impurity-seeded ELMy H-modes in JET, with high density and reduced heat load

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer

Results From Initial Snowflake Divertor Physics Studies on DIII-D

Physics of the detached radiative divertor regime in DIII-D

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod

Erosion and Confinement of Tungsten in ASDEX Upgrade

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants

Simulation of ASDEX Upgrade Ohmic Plasmas for SOLPS Code Validation

Cross-Field Transport in the SOL: Its Relationship to Main Chamber and Divertor Neutral Control in Alcator C-Mod

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas

Development and Validation of a Predictive Model for the Pedestal Height (EPED1)

Mitigation of ELMs and Disruptions by Pellet Injection

L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

EXD/P3-13. Dependences of the divertor and midplane heat flux widths in NSTX

PSI meeting, Aachen Germany, May 2012

Simulation of Plasma Flow in the DIII-D Tokamak

Integrated Core-SOL-Divertor Modelling for ITER Including Impurity: Effect of Tungsten on Fusion Performance in H-mode and Hybrid Scenario

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter

Impurity Seeding in ASDEX Upgrade Tokamak Modeled by COREDIV Code

Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation

Critical Physics Issues for DEMO

ABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIII-D

Partial detachment of high power discharges in ASDEX Upgrade

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

TOKAMAK EXPERIMENTS - Summary -

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

Fusion Development Facility (FDF) Divertor Plans and Research Options

Progress in characterization of the H-mode pedestal

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Divertor Detachment on TCV

History of PARASOL! T. Takizuka! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency!

and expectations for the future

TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D

IT/P6-13 Power and particle fluxes at the plasma edge of ITER : Specifications and Physics Basis

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139

Blob sizes and velocities in the Alcator C-Mod scrapeoff

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Introduction to Fusion Physics

Modelling radiative power exhaust in view of DEMO relevant scenarios

Recent results on high-triangularity H-mode studies in JET-ILW

IMPLICATIONS OF WALL RECYCLING AND CARBON SOURCE LOCATIONS ON CORE PLASMA FUELING AND IMPURITY CONTENT IN DIII-D

Direct measurements of the plasma potential in ELMy H mode. plasma with ball pen probes on ASDEX Upgrade tokamak

THE ADVANCED TOKAMAK DIVERTOR

Divertor Power Handling Assessment for Baseline Scenario Operation in JET in Preparation for the ILW

EX/4-2: Active Control of Type-I Edge Localized Modes with n = 1 and n = 2 fields on JET

Transcription:

Edge Plasma Energy and Particle Fluxes in Divertor Tokamaks Alberto Loarte European Fusion Development Agreement Close Support Unit - Garching Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 1

1. Introduction Outline of the Talk Edge Power and Particle Fluxes : Divertor SOL 2. Steady State Energy and Particle Fluxes Divertor Radiation and Particle Control Main Chamber Particle Fluxes 3. ELM Transient Energy and Particle Fluxes Bulk Plasma Energy Losses, ELM Divertor Energy Fluxes & Interaction with Main Chamber Walls 4. Conclusions Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 2

Introduction B r B r Open Field Lines in Tokamaks Transport (~ 50 m) >> Transport (~ 1 cm) Localised Interaction in Plasma Facing Components Control of Energy and Particle Fluxes (He) on PFCs is crucial for development of Fusion Edge Plasma rich Physics: Transport B r & B r, neutral Species,Plasma-Material Interaction, Improvement in Understanding of Edge Plasma Physics : Models + Diagnostics Large Energy and Particle Fluxes on PFCs + Control of Interaction Region by PFCs Design and Limiter Plasma Diverted Plasma JET P SOL ~ 10 MW A div ~1.5 m 2 ITER P SOL ~ 100 MW A div ~ 3.5 m 2 B r θ Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 3

Divertor SOL a) Target Impurity Source separated from Main Plasma b) λ 0 λ 0 λ λ << Distance X-point Target D, C, D2, Large Ionisation/Radiative Losses T plasma,divertor << T plasma,sol Low q div c) Large Neutral Densities (Divertor Closure) Good D 2 and He Exhaust d) Separate Divertor Power Handling and Particle Control Problem (Geometry) e) Low T plasma.divertor Atomic and Molecular Physics C x D y Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 4

Steady State Energy and Particle Fluxes Divertor Geometry Low T e at divertor Carbon Chemical Sputtering Large P rad div in wide P INP Range Results are well understood by 2-D modelling (B2-Eirene) Schneider, R., et al., 17 th IAEA Conference, Yokohama, 1998 Kallenbach, A., et al., Nucl. Fusion 39 (1983) 901 Coster, D. et al., 27 th EPS, Maastricht, 1999 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 5

Divertor Neutral Particle Fluxes Optimising Divertor Geometry reduces Neutral Escape through Divertor Plasma Increased Divertor Closure Larger Divertor Pumping Divertor Closure = S ion outside-divertor /S ion total Common Result to all Divertor Experiments (AUG, C-mod, DIII-D, JET, JTF-2M JT-60U) JET Team, Nuclear Fusion 39 (1999) 1751 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 6

SOL Transport Main Chamber Recycling (I) Neutral Pressure in main Chamber : Divertor Leakage + Main Chamber Recycling low n 0 in Main Chamber low C-X and possibly reduced Erosion C-mod : by pass open lower P div & same P main P main independent of P div or (f leak x P div )~ constant? Pitcher, C.S., et al, Phys. Plasmas 7 (2000) 1894 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 7

SOL Transport Main Chamber Recycling (II) Larger Divertor Closure Decrease of Neutral Pressure in main Chamber but minimum n 0 in main Chamber (Mk IIa/p & Mk IIGB) set by anomalous Transport (ELMs?) S pump eff ~ 115 m 3 /s S leak ~ 305 m 3 /s Divertor Main Chamber S pump eff ~ 120 m 3 /s S leak ~ 114 m 3 /s Mark IIa/p P div Mk IIa:P div Mk IIa/p:P div Mk IIGB 1.0 1.15 2.50 (L-mode) 1.0 1.10 1.60 (H-mode) P main Mk IIa:P main Mk IIa/p:P main Mk IIGB 1.0 0.65 0.65 (L-mode) 1.0 0.65 0.65 (H-mode) Altmann, H., et al., 17 th SOFE, San Diego 1997 Horton, L., et al., Nucl. Fusion, 39 (1999) 1 Maggi, C., et al., 26 th EPS, Maastricht, 1999 Loarte, A., et al., Plasma Phys. Control. Fusion 43 (2001) R183 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 8

SOL Transport Main Chamber Recycling (III) long Tails in SOL n e & T e seen in many Experiments ASDEX Upgrade T e n e p e Neuhauser, J., et al., Plasma Phys. Control. Fusion 44 (2002) 855 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 9

SOL Transport Main Chamber Recycling (IV) SOL Turbulence : large Transient Events large Gradients & fast Propagation Speeds ( ne, SOL ne, SOL ) ΓExB PDF Γ V ExB (m/s) σ n e, SOL ExB Hidalgo, C., et al. 15 th PSI, Gifu, 2002 Physics of λ SOL n ~ 1 cm v anomalous ~ 10 20 m/s (D ~ 0.1-0.2 m 2 /s) SOL n e, SOL v V anomalous ~ 200 m/s Large Large = Diffusion τ ~ 50 µs (& τ II ~ 1 ms) SOL Transport Main Chamber Erosion + required Divertor Closure SOL Turbulence Simulation Codes Comparison with Measurements is now possible Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 10

ELM Transient Energy and Particle Fluxes H-mode Confinement is characterised by ETB and Type I ELMs Type I ELMs are triggered when MHD limit is exceeded Typical W ELM ~ 5 % W dia ~ 15 % W ped Regimes with high Pedestal Pressure and small ELMs exist in JT-60U and ASDEX Upgrade but ITER Confinement is based on Type I ELMy H-mode Kamada, Y., Plasma Phys. Contr. Fus. 42 (2000) A247, Stober, J., et al. Nucl. Fusion 41 (2001) 1123 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 11

ELM Energy Losses (II) Type I ELM Energy Loads are of Concern for ITER Divertor Lifetime Bulk Plasma Type I ELM Energy Losses : Conduction & Convection W ELM /W ped decreases with increasing n e,ped because of T e,ped /T e,ped Loarte, A., et al., 28 th EPS Conf. 2001 & Plasma Phys.Contr.Fus.(2002), Leonard, A., et al., Plasma Phys.Contr.Fus. 44 (2002) 945 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 12

ELM Energy Losses (III) Multimachine Evaluation of W ELM indicates that ν* ped is an ordering Parameter for ELM Energy Losses W ELM /W ped 0.25 0.2 0.15 0.1 JET Delta_0.25_3.5MA/3.0T JET_Delta=0.33_2.5MA/2.7T JET_Delta_0.33_Before_Pellet_2.5MA/2.7T JET_Delta_0.33_At_Pellet_2.5MA/2.7T JET LT Ar_2.5MA/2.4T JET Delta_0.33_1.9MA/2.0T JET Delta_0.41_2.5MA/2.7T_Squareness JET_Delta_0.50_2.5MA/2.7T JET HT Ar_2.5MA/2.4T JT 60U DIII D_LT_PSI DIII D_HT PSI ASDEX U W ELM /W ped 0.25 0.2 0.15 0.1 JET Delta_0.25_3.5MA/3.0T JET_Delta=0.33_2.5MA/2.7T JET_Delta_0.33_Before_Pellet_2.5MA/2.7T JET_Delta_0.33_At_Pellet_2.5MA/2.7T JET LT Ar_2.5MA/2.4T JET Delta_0.33_1.9MA/2.0T JET Delta_0.41_2.5MA/2.7T_Squareness JET_Delta_0.50_2.5MA/2.7T JET HT Ar_2.5MA/2.4T JT 60U DIII D_LT_PSI DIII D_HT PSI ASDEX U 0.05 ν* ITER 0.05 ITER 0 0.01 0.1 1 10 0 0 0.2 0.4 0.6 0.8 1 1.2 ν * ped n e,ped /n Greenwald Not a W ELM Scaling Development of ELM Energy Loss Physics Model : 1) ν* ped MHD Trigger of ELM (Bootstrap Current) 2) ν* ped B Energy/Particle Transport during ELM 3) ν* ped II B SOL Energy/Particle Transport during ELM Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 13

ELM Divertor Power Fluxes (I) Time Scale for Divertor Power Flux Correlated with T e,ped T e,ped ~ 1.6 kev JET Low Density Eich PSI 2002 JET. Loarte PPCF 2002 T e,ped (a.u.) MHD Inner Midplane (a.u.) τ MHD Outer Midplane (a.u.) Soft X-Ray Inner Divertor (a.u) MHD duration of ELM Event well correlated with X-ray Bremsstrahlung Emission from the Divertor Target [Be(250µm)] T e > 0.8-1 kev] Lingertat, J., et al., Jour. Nuc. Mat. 241-243 (1997) 402 Gill, R., et al., Nucl. Fusion 38 (1998) 1461 D α Midplane (a.u.) D α Inner divertor (a.u.) Time (ms) D α Outer divertor (a.u.) 0 0.5 1.0 1.5 2.0 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 14

ELM Divertor Power Fluxes (II) At lower T e,ped τ ELM IR much longer than MHD duration of ELM and of hot Electron Energy Pulse on Divertor T e,ped ~ 0.9 kev JET Medium Density Eich PSI 2002 JET. Loarte PPCF 2002 T e,ped (a.u.) MHD Inner Midplane (a.u.) MHD Outer Midplane (a.u.) Soft X-Ray Inner Divertor (a.u) τ D α Midplane (a.u.) D α Inner divertor (a.u.) Sheath vs. Core B impedance to Energy Loss? D α Outer divertor (a.u.) 0 0.5 1.0 1.5 2.0 Time (ms) Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 15

Duration of Divertor ELM Energy Pulse correlated with II B Ion Transport (~ kinetic Simulations) ELM Divertor Power Fluxes (III) Front τ = 2πRq 95 c s, ped Lingertat, J., et al., Jour. Nuc. Mat. 241-243 (1997) 402 Herrmann, A., et al., 15 th PSI Conference, Gifu, 2002 Loarte, A., et al., 15 th PSI Conference, Gifu, 2002 Eich, T., et al., 15 th PSI Conference, Gifu, 2002 Bergmann, et al., Nucl. Fusion 2002 Jachmich, et al., 28 th EPS Conf., Madeira, 2001 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 16

ELM Divertor Power Fluxes (IV) SOL Width for Energy Flux during ELM similar to between ELMs χ χ χ χ λ p @ELM (cm) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 ELM ASDEX Upgrade Herrmann Low delta High delta 0 0.2 0.4 0.6 0.8 1 1.2 1.4 λ p between ELMs (cm) between _ ELM Herrmann, A., et al., 15 th PSI Conference, Gifu, 2002 Lingertat, J., et al., Jour. Nuc. Mat. 241-243 (1997) 402 Loarte, A., et al., 15 th PSI Conference, Gifu, 2002 Eich, T., et al., 15 th PSI Conference, Gifu, 2002 Relative Probability 0 0 0.2 0.4 0.6 0.8 1 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 17 1.0 0.8 0.6 0.4 0.2 Despite narrow λ @ELM W ELM div / W ELM ~ 0.6 ASDEX Upgrade. Data from Herrmann EPS 1997 W DIV ELM/ W ELM Where does the Rest of W ELM go? 1) Toroidal Asymmetries 2) Main Chamber 3) Transiently enhanced P RAD ELM

ELM Energy Losses to Main Chamber (I) JET : Divertor ELM missing Energy correlated with ELM size (<n e >) JET - Eich JET - Eich High n e W ELM div / W ELM Bulk but possibly P ELM Rad, div High n e ELMs : a) More toroidally symmetric b) W ELM Main Chamber / W ELM Bulk Eich, et al., T., 15 th PSI Conference, Gifu, 2002 Herrmann, A., et al., 15 th PSI Conference, Gifu, 2002 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 18

ELM Energy Losses to Main Chamber (II) Divertor ELM missing Energy Fast radial ELM Particle Transport (?) For large ELM Events (~ di sat /dr) v r,elm >1 km/s JET- Large ELM Plasma Fluxes in far SOL Low n e Type I ELMs High n e Type I ELMs Type III ELMs Loarte, A., et al., Nucl. Fusion 38 (1998) 331 Hidalgo, et al., 29 th EPS Montreux 2002 Counsell, G., et al., 15 th PSI Conference, Gifu, 2002 τ τ ELM 10µ s Energy ~ 10 100µ s Radial ELM Propagation in MAST ~ 1500 m/s Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 19

Conclusions (I) Poloidal Divertors have successfully demonstrated Control of Power and Particle Fluxes in Tokamaks Understanding of parallel Transport in Divertor SOLs is at an advanced Level SOL Flows & Drifts Collisionless Ion Transport in SOL Understanding of perpendicular SOL Transport is at a much more primitive Stage (difficulty of Measurements) SOL Diffusive Particle Transport vs. Convective Blobs Physical Parameters that determine SOL Transport Convective SOL Energy Transport Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 20

Conclusions (II) Type I ELMs Divertor Energy Loads are of Concern for the Lifetime of the ITER Divertor. Physics based Extrapolation is still uncertain Type I ELM Energy Losses determined by n e,ped & T e,ped Bulk Plasma ELM conductive Energy Losses decrease with ν* ped ELM convective Energy Losses independent of ν* ped Physical Process that leads to ν* ped Dependence? Extrapolation of pure convective Type I ELMs? Physics behind ELM Particle Losses (MHD?) ELM Divertor Energy Deposition Time is determined by T e,ped Is T e,ped Dependence due to Transport in ELM ergodised Layer or to Formation of high Energy e - Sheath (or both)? Radial Particle Fluxes Erosion of Main Chamber Walls ELM Energy Split Divertor/Main Walls Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 21

Limiter SOL Scrape-off Layer Plasma Physics in Limiter Discharges is relatively Simple : a) λ Low Re-ionisation of D 0 0 D ~ 10 cm in SOL b) λ Sizeable Re-ionisation of C 0 0 C ~ 1 cm in SOL c) λ D, C D mm Molecules are Re-ionised in SOL 2 λ x y ~ d) Low SOL Ionisation/Radiation T plasma, limiter ~ T plasma,sol PFC Alignment + λ SOL Maximum Area of Limiter Γ D 0,limiter ~ 1/A limiter Power Handling vs. Particle Control? Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 22

Divertor Geometry and Fluxes (Ia) B θ 0 near X-point + Divertor Target Geometry determine Γ div & Γ div JET Experiments : Ohmic and ELM-free H-mode Loarte, A., et al., Nucl. Fusion 32 (1992) 681 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 23

Divertor Geometry and Fluxes (IIa) Diffusion in Private Flux Region (PFR) is a unique Divertor Process DIII-D Experiments : ELMy H-mode Γ div Increases with X-point height Decreasing Flux expansion and Increasing angle of incidence No Diffusion in PFR Diffusion in PFR accounts for ~2 reduction in when going from AUG-Div I AUG-Div II div,sep P Lasnier, C. et al., Nucl. Fusion 38 (1998) 1225 Loarte, A., Contrib. Plasma Phys. 32 (1992) 468. Schneider, R., et al., J. Nucl. Mat. 266-269 (1999) 175 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 24

Steady State Energy and Particle Fluxes(Ia) Divertor Plasma Conditions Characterised by Behaviour of Ion Flux a) Low Recycling Divertor J div ~ e, SOL T div Constant b) High Recycling Divertor J div ~ n n 2 e, SOL T div 1 2 ne, c) Detached Divertor J div n x e, SOL SOL ( x > 0) Degree of Detachment D.o.D > 1 Detachment T div ~ y n e, SOL > ( y 0) Shimomura, Y., et al., Nucl. Fusion 23 (1983) 869 Keilhacker, M., et al. Phys. Scr. T2/2 (1982) 443 Loarte, A., et al., Nucl. Fusion 38 (1998) 331 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 25

SOL Pressure Balance is maintained in Low/High Recycling Divertors but not in Detached Divertors (AUG, DIII-D, C-Mod, JET, JT-60U) EDGE2D/U-NIMBUS JET Divertor Particle Fluxes (Ia) Gas Target Physics : a) D + - D, D + -D 2 collisions (Momentum Loss) b) D + -e - Recombination (Particle Sink) c) Divertor Geometry Affects Detachment Onset Borrass, K., et al., J. Nucl. Mat. 241-243 (1997) 250 Borrass, K., Czech, J. Phys. 48/S2 (1998) 13 Loarte, A., J. Nucl. Mat. 241-243 (1997) 118 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 26

Divertor Energy Fluxes (Ia) High Recycling Divertor Transport Electron Conduction Detached Divertor Transport Convection DIII-D Leonard, A.W., et al., Phys. Rev. Lett. 78 (1997) 4769 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 27

Divertor Neutral Fluxes (Ia) 2-D Edge Plasma Models (EDGE2-D/NIMBUS & B2-Eirene) used to understand Neutral Transport in Divertor : Ballistic versus Diffusive Transport Ballistic Transport Strong Dependence of Pumping on Divertor Plasma Position Diffusive Transport (Multiple Wall Collisions and C-X) Weak Dependence of Pumping on Divertor Plasma Position DIII-D JET Cryo-Pump Loarte, A., et al., 24 th EPS, Berchtesgaden 1997 Loarte, A., et al., Plasma Phys. Control. Fusion 43 (2001) R183 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 28

Divertor Neutral Fluxes (IIa) Noble Gases Transport has large Ballistic Component Noble Gas Enrichment in Pumping Plenum dominated by Geometry and Ionisation mean free Path Div I Ne reaches Pump He escapes Divertor Div II Ne cannot reach Pump He reaches Pump Divertor Geometry can be optimised for He pumping versus Ne/Ar used for P rad Control Schneider, R., et al., 17 th IAEA Conference, Yokohama, 1998 Bosch, H. S., et al., Jour. Nuc. Mat. 266-269 (1999) 462 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 29

Divertor Asymmetries (Ia) Toroidal Geometry leads to Power Asymmetries T e,div out > T e,div in Toroidal in/out Asymmetry & Flow Pattern 1) Larger Flux through Outer Half of Tours 2) Power Asymmetry Inner Divertor Detachment Inner to Outer Neutral Flux ASDEX-Upgrade Kallenbach, A., et al., Nucl. Fusion 39 (1983) 901 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 30

Divertor Asymmetries & Flows (Ia) Direction of B φ affects Inner/Outer Divertor Imbalance and SOL Flows JT-60U - Midplane B φ negative B φ reversal Effects on Inner Outer Divertor T e C-mod B φ positive Asakura, N., et al., Phys. Rev. Lett. 84 (2000) 3093 Hutchinson, I., et al., Plasma Phys. Control. Fusion 38 (1996) A301 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 31

Divertor Asymmetries & Flows (IIa) SOL Drifts SOL Flows Plasma Core Momentum Diffusion SOL Flows Erents S.K., et al., Plasma Phys. Control. Fusion 42 (2000) 905 Comparison 2-D Edge Modelling Codes (with Drifts) Experiment Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 32

SOL Transport Main Camber Recycling (Ia) Larger Divertor closure decrease of Neutral Pressure in main Chamber but minimum n 0 in main Chamber (Mk IIa/p & Mk IIGB) set by anomalous Transport (ELMs?) S pump Eff ~ 115 m 3 /s S leak ~ 305 m 3 /s S pump Eff ~ 120 m 3 /s S leak ~ 127 m 3 /s Mark IIa/p P div Mk IIa:P div Mk IIa/p:P div Mk IIGB 1.0 1.15 2.50 (L-mode) 1.0 1.10 1.60 (H-mode) P main Mk IIa:P main Mk IIa/p:P main Mk IIGB 1.0 0.65 0.65 (L-mode) 1.0 0.65 0.65 (H-mode) Altmann, H., et al., 17 th SOFE, San Diego 1997 Horton, L., et al., Nucl. Fusion, 39 (1999) 1 Maggi, C., et al., 26 th EPS, Maastricht, 1999 Loarte, A., et al., Plasma Phys. Control. Fusion 43 (2001) R183 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 33

Collisionless Ions in SOL(I) Evidence for high Energy ions in SOL of JET SOL H-modes exists for a long Time JET-Low n e H-modes P ion /P electron > 5 Ion Orbit Simulations JET Mk II GB Loarte, A. PhD Thesis & Jour. Nuc. Mat. 220-222 (1995) 606 Fundamenski, W., et al., Plasma Phys.Control.Fusion 44 (2002) 761 Physics Validation for ITER required : ν* ped <<1 but ν* C-X div >>1 Ion Losses to inner/outer Divertor depend : 1) E r in SOL 2) Pedestal Plasma Collisionality and Pedestal width 3) C-X in the divertor Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 34

Collisionless Particles in SOL (IIa) ASCOT Calculation Results depend on : 1) E r in SOL 2) Pedestal Collisionality and width 3) C-X in the divertor Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 35

ELM Energy Losses (Ia) ITER Divertor Lifetime determined by Type I ELMs Energy Loads leading to Ablation/Melting W ITER ped ~ 100 MJ Federici, G., 15 th PSI Conference, Gifu Japan 2002 A div ITER ~ 5 10 m 2 W ped ITER < 5-10 MJ Extrapolation of present Results to ITER : o Diagnostics that allow good Experimental Characterisation ELM Energy/Particle Losses o Systematic Experiments for Type I ELM Characterisation o Development of Physics Model for Type I ELM Energy and Particle Losses Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 36

ELM Energy Losses (IIa) Minimum Type I ELMs (Purely Convective) can occur at high density JET Normal Type I ELM JET Minimum Type I ELM Pulse No: 52014 Time: 18.090112 Separatrix Radius 2500 1 ms after ELM 2500 Pulse No: 52822 Time: 20.020144 Separatrix Radius 2000 Pedestal Radius 2000 1 ms after ELM T e (ev) 1500 1000 350 µs after ELM T e (ev) 1500 1000 Pedestal Radius 350 µs after ELM 500 500 0 Before ELM 3.4 3.5 3.6 3.7 3.8 Major radius, R (m) JG02.52-13c Before ELM 0 3.3 3.4 3.5 3.6 3.7 3.8 Major radius, R (m) JG02.52-14c Loarte, A., et al., 43 rd APS Conf. 2001 & Plasma Phys.Contr.Fus.(2002), Leonard, A., et al., Jour. Nuc. Mat. 290-293 (2001) 1097 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 37

T e (ev) ELM Energy Losses (IIIa) Decrease of W ELM with <n e > due to T e,ped /T e,ped decrease not tolarge reduction of ELM affected volume JET. Loarte + JT 60U. Chankin 3500 3000 2500 2000 1500 JET_53185 low <n e > b_elm JET_53185 low <n e > a_elm JET_53186_medium <n e > b_elm JET_53186_medium <n e > a_elm JET_53190_high <n e > b_elm JET_53190_high <n e > a_elm JT 60U_37847_low <n e > b_elm JT 60U_37847_low <n e > a_elm 1000 500 1 0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 ρ JET. Loarte + JT 60U. Chankin T e ELM / Te ELM max 0.8 0.6 0.4 0.2 JET_53185 low <n e > JET_53186 medium <n e > JET_53190 high <n e > JT 60U_37847 low <n e > 0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 ρ Loarte, A., et al., 15 th PSI Conference, Gifu 2002 Loarte, A., et al., Plasma Phys. Contr. Fus. (2002) Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 38

ELM Particle Losses (I) Bulk Plasma ELM Particle Losses (& B Energy Convection) not obviously correlated with T e,ped or n e,ped ( MHD Nature of ELM?) DIII-D JET- Large ELM Plasma Fluxes in far SOL Low n e Type I ELMs Pedestal Pressure Degradation High n e Type I ELMs Type III ELMs Leonard, A., et al., Plasma Phys. Contr. Fus. 44 (2002) 945 Loarte, A., et al., Nucl. Fusion 38 (1998) 331 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 39

ELM Particle Losses (IIa) Divertor ELM Particle Flux Consistent Ballooning Origin of ELM MHD crash 2 0-2 5 4 2 0 5 4 2 0 Mirnov Coil (a.u.) Midplane D α (a.u.) Inner Divertor D α (a.u.) Outer Divertor D α (a.u.) Similar Observations in several Divertor Tokamaks common ELM Origin & II B Particle Transport @ ELM 0.5 3 2 1 5 3 1 1.0 Outer I sat (a.u.) Inner Divertor D α (a.u.) Inner I sat (a.u.) 0-400 -200 0 200 400 600 800 1000 Time (µs) 1 0-1 Mirnov Coil (a.u.) -2-3 Midplane D α (a.u.) Outer Divertor D α (a.u.) 0.5 Outer I sat (a.u.) Inner I sat (a.u.) 0-400 -200 0 200 400 600 800 1000 Time (µs) JG02.52-23c JG02.52-24c τ II = 150 µs τ II = 200 µs τ in out Dα (µs) JET. Loarte + JT 60U. Chankin + ASDEX Upgrade. Horton + DIII D. Porter 300 250 200 150 100 50 0 JET JT 60U ASDEX Upgrade DIII D 0 50 100 150 200 250 300 τ II Front (µs) Loarte, A., et al., Plasma Phys. Contr. Fus. (2002), Loarte, A., et al., 15 th PSI Conference, Gifu 2002 Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 40

P X ray (W/m 2 ) ELM Divertor Power Fluxes (Ia) From Electron Bremsstrahlung ~ q e can be estimated R Bremsstrahlung (C) ~ 5 10 3 3/2 kt e /m e c 2 (More precise Estimate f e div (x,t)) T e,ped = 1.4 kev lower T e,ped lower W ELM div,electron τ e ELM ~ constant but τ IR ELM ~ 1/T e,ped 5000 Maximum Electron Power Flux 150 P_X ray T e,ped = 1.0 kev 4000 3000 2000 1000 P_e 100 50 Pelectron (MW/m2 ) Sheath vs. Core 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 W ELM (MJ) B impedance to Energy Loss? Gill, R., et al., Nucl. Fusion 38 (1998) 1461, Loarte, A., et al., 43 rd APS Conf. 2001 & Plasma Phys.Contr.Fus.(2002) Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 41

Divertor Asymmetries (IIa) Divertor Design + Fuelling used to affect In/Out Divertor Asymmetry JET Mk II Gas Box Maggi, C. et al., 26 th EPS Conference, Maastricht, 1999 Kukushkin, A., et al., Nucl. Fusion 39 (2002) 187 Insulating Inner Outer Divertor Neutral Flow allows Detachment Control but No Insulation produces most Symmetric In/Out Divertor Plasmas ITER Divertor designed with large Inner Outer Neutral Conductance Alberto Loarte New Trends in Plasma Physics II Max-Planck-Institut für Plasmaphysik - Garching 3-07 - 2002 42