BRAUER CORRESPONDENCE AND GREEN. Citation 数理解析研究所講究録 (2008), 1581:

Similar documents
Citation 数理解析研究所講究録 (2006), 1466:

Citation 数理解析研究所講究録 (1994), 886:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Citation 数理解析研究所講究録 (2004), 1396:

The Major Problems in Group Representation Theory

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

City Research Online. Permanent City Research Online URL:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

New York Journal of Mathematics. Cohomology of Modules in the Principal Block of a Finite Group

SOURCE ALGEBRAS AND SOURCE MODULES J. L. Alperin, Markus Linckelmann, Raphael Rouquier May 1998 The aim of this note is to give short proofs in module

RAPHAËL ROUQUIER. k( )

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

Citation 数理解析研究所講究録 (2005), 1440:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

Broué s abelian defect group conjecture holds for the sporadic simple Conway group Co 3

Chain complexes for Alperin s weight conjecture and Dade s ordinary conjecture in the abelian defect group case

RADHA KESSAR, SHIGEO KOSHITANI, MARKUS LINCKELMANN

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Subgroup Complexes and their Lefschetz Modules

The number of simple modules associated to Sol(q)

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

Citation 数理解析研究所講究録 (2013), 1841:

Citation 数理解析研究所講究録 (2010), 1679:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

MODULAR SPECIES AND PRIME IDEALS FOR THE RING OF MONOMIAL REPRESENTATIONS OF A FINITE GROUP #

A note on the basic Morita equivalences

Citation 数理解析研究所講究録 (2001), 1191:

Title (Properties of Ideals on $P_\kappa\ Citation 数理解析研究所講究録 (1999), 1095:

FOCAL SUBGROUPS OF FUSION SYSTEMS AND CHARACTERS OF HEIGHT ZERO

The Tensor Product of Galois Algebras

Citation 数理解析研究所講究録 (2009), 1665:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

City Research Online. Permanent City Research Online URL:

SELF-EQUIVALENCES OF THE DERIVED CATEGORY OF BRAUER TREE ALGEBRAS WITH EXCEPTIONAL VERTEX

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Citation 数理解析研究所講究録 (1996), 966:

On stable equivalences with endopermutation source arxiv: v1 [math.rt] 11 Feb 2014

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Citation 数理解析研究所講究録 (2012), 1794:

A NOTE ON BLOCKS WITH ABELIAN DEFECT GROUPS. Yun Fan Department of Mathematics Central China Normal University Wuhan China.


INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

Citation 数理解析研究所講究録 (2006), 1476:

Modular Representation Theory of Endomorphism Rings

Citation 数理解析研究所講究録 (2012), 1805:

On p-monomial Modules over Local Domains

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold.

THE DERIVED CATEGORY OF BLOCKS WITH CYCLIC DEFECT GROUPS

arxiv: v1 [math.kt] 14 Jun 2015

Citation 数理解析研究所講究録 (2010), 1716:

arxiv:math/ v3 [math.qa] 16 Feb 2003

Hochschild and cyclic homology of a family of Auslander algebras

ON THE SOCLE OF AN ENDOMORPHISM ALGEBRA

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

arxiv: v2 [math.rt] 19 Sep 2013

Citation 数理解析研究所講究録 (2016), 1995:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

The Ring of Monomial Representations

Citation 数理解析研究所講究録 (2004), 1368:

Thick subcategories of the stable module category

Citation 数理解析研究所講究録 (2013), 1871:

NONCOMMUTATIVE GRADED GORENSTEIN ISOLATED SINGULARITIES

In the special case where Y = BP is the classifying space of a finite p-group, we say that f is a p-subgroup inclusion.

On Fixed Point Sets and Lefschetz Modules for Sporadic Simple Groups

Citation 数理解析研究所講究録 (1996), 941:

Title series (New Aspects of Analytic Num. Citation 数理解析研究所講究録 (2002), 1274:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

Most rank two finite groups act freely on a homotopy product of two spheres

Endomorphism rings of permutation modules

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

THE 2-MODULAR DECOMPOSITION MATRICES OF THE SYMMETRIC GROUPS S 15, S 16, AND S 17

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

arxiv: v1 [math.rt] 12 Jul 2018

Burnside rings and fusion systems

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

Derived Functors and Explicit Projective Resolutions

arxiv: v1 [math.gr] 4 Mar 2014

Odd H-Depth. Lars Kadison University of Porto

Citation 数理解析研究所講究録 (1994), 860:

Generalized Alexander duality and applications. Osaka Journal of Mathematics. 38(2) P.469-P.485

`-modular Representations of Finite Reductive Groups

Citation 数理解析研究所講究録 (1999), 1099:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Citation 数理解析研究所講究録 (2009), 1669:

On Group Ring Automorphisms

Citation 数理解析研究所講究録 (2017), 2014:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

Citation 数理解析研究所講究録 (2008), 1588:

Solution of Brauer s k(b)-conjecture for π-blocks of π-separable groups

Citation 数理解析研究所講究録 (2008), 1605:

Science and Their Applications) Citation 数理解析研究所講究録 (2008), 1614:

CHAPTER III NORMAL SERIES

arxiv: v1 [math.rt] 11 Sep 2009

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Transcription:

BRAUER CORRESPONDENCE AND GREEN TitleCORRESPONDENCE (Cohomology Theory o and Related Topics) Author(s) Sasaki, Hiroki Citation 数理解析研究所講究録 (2008), 1581: 14-19 Issue Date 2008-02 URL http://hdl.handle.net/2433/81438 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

$H$ Brauer $H$ 1581 2008 14-19 14 BRAUER CORRESPONDENCE AND GREEN CORRESPONDENCE * Sasaki, Hiroki Shinshu University, School of General Education 1 Introduction Let be an algebraically closed field of prime characteristic $k$ $p$. Let be a finite group of order divisible by $p$. We are concemed with cohomology algebras of block ideals which are in Brauer correspondence and block varieties of modules in Green correspondence. 2 Cohomology of blocks and Brauer correspondence Let be a block ideal of $kg$. Proposition 2.3 of Kessar, Linckelmann and Robinson [5] implies $H^{*}(G, B)\subseteq H^{*}(H, C)$, where is a suitably taken block ideal of a suitably chosen subgroup $C$ $H$ of. To understand such an inclusion via transfer map between the Hochshild cohomology algebras of the block ideals and we discussed in Kawai and Sasaki [4] under the following situation. $C$ has $D$ as a defect group is a subgroup of and is a block ideal of $C$ $kh$ correspondent C is defined and $C^{G}=B$ and $D$ is also a defect $\Psi^{oup}$ of $C$ We had considered the $(C, B)$-bimodule $M=CB$ and gave a necessary and sufficient condition for $M$ to induce the fftsfer map $\theta omhh^{*}(b)$ to $HH^{*}(C)$ which restricts to the inclusion map of $H^{*}(G, B)$ into $H^{*}(H, C)$. Here we discuss under the following situation; Situation (BC) has $D$ as a defect group is a subgroup of such that $DC_{G}(D)\leq H$ and $C$ is a block ideal of $kh$ $C^{G}=B$ and $D$ is also a defect group of $C$ The detailed version of this note will be submitted for publication elsewhere.

$H$ 15 We shall denote by $G^{op}$ the opposite group of the group and consider the group algebra $kg$ as a $k[g\cross G^{op}]$ -module through $(x, y)\alpha=x\alpha y$ for $x,$ $y\in G$ and $\alpha\in kg$. We have a $k[g\cross G^{op}]$ -isomorphism $kg\simeq k[g\cross G^{op}]\otimes_{k[\Delta G]}k$, where $\Delta G=\{(g, g^{-1}) g\in G\}$. Deflnition 2.1. Under Situation (BC), the Green correspondent of $C$ with respect to $(GxH^{op}, \Delta D, H\cross H^{op})$ is defined, which turns out to be a $(B, C)$-bimodule; we denote it by $L(B, C)$. The module $L(B, C)$ will play crucial role, depending on the following fact. Theorem 2.1. Under Situation (BC) let $L=L(B, C)$. (i) The elativelyprojective elements $\pi_{l}\in Z(B)$ and $\pi_{l^{*}}\in Z(C)$ are both $in\nu emble$. (ii) Every $(B, A)$-bimodule is relatively L-projective; every $(C, \Lambda)$ -bimodule is relatively $L^{*}$-projective, where A is a symmetric k-algebra. Following Alperin, Linckelmann and Rouquier [1], we recall the definition ofsource modules of block ideals. Deflnition 2.2. ([1, Definition 2]) There exists an indecomposable direct summand $X$ of $GxD^{op}B$ having $\Delta D$ as a vertex. The $k[g\cross D^{op}]$ -module $X$ is called a source mokle of the block. We shall write $H^{*}(G, B;X)$ for the block cohomology of with respect to the defect group $D$ $i$ and the source idempotent such that $X=kGi$. Green correspondence between indecomposable $k[g\cross D^{op}]$ -modules and indecomposable $k[h\cross D^{op}]$ -modules relates source modules of the blocks and $C$ in the following way. Proposition 2.2. Under Situation (BC) let $Y$ be a source module of C. Then the Green correspondent $X$ of $Y$ with respect to $(G\cross D^{op}, \Delta D, H\cross D^{op})$ is a source mo&le of. Proposition 2.3. Under Situation (BC) take a source module $X$ of as a direct summand of. $GxD^{\circ p}l(b, C)$ Then the Green correspondent $YofX$ with respect to $(GxD^{op},$ $D^{op})$ is a source module of. $C$ $\Delta D,$ $H\cross$ Thus, under Situation (BC) we can take a source module $X$ of the block and a source module of the block in order that $Y$ $C$ $X$ and are in the Green correspondence with respect $Y$ to. $(G\cross D^{op}, \Delta D, H\cross D^{op})$ We refer to such situation as Situation (XY). Situation (XY) has $D$ as a defect group is a subgroup of such that $DC_{G}(D)\leq H$ and $C$ is a block ideal of $kh$

$C^{G}=B$ a $1$ $ $ 16 and is $D$ also a defect group of $C$ source module $X$ of the block and a source module of the block are in the $Y$ $C$ Green correspondence with respect to $(G\cross D^{op}, \Delta D, H\cross D^{op})$ $G\cross G^{op}$ $G\cross H^{op}$ $L=L(B, C)$ X $G\cross D^{o_{P^{/}}}$ $Green_{1}corre\uparrow$. $Green_{1}corre\uparrow$. $ $ $/^{H\cross H^{op}}$ $C$ $Y$ $H\cross D^{op}$ $\Delta D$ Then the $(B, C)$-bimodule $L=L(B, C)$ links the source modules $X$ and in a similar way $Y$ to induction and restriction ofmodules. Theorem 2.4. Under Situation (XY) thefollowing hold (i). $L^{*}\otimes_{B}X\equiv Y\oplus O(\Psi(G\cross D^{op}, \Delta D, H\cross D^{op}))$ (ii) $L\otimes_{C}Y\equiv X\oplus O(\chi(G\cross D^{op}, \Delta D, H\cross D^{op}))$. $D\triangleleft (iii) If H$, then. $L\otimes_{C}Y\simeq X$ The $(B, C)$-bimodule $L(B, C)$ has already appeared in some works. In particular, Alperin, Linckelmann and Rouquier [1] treated the case of $H=N_{G}(D, b_{d})$, where $(D, b_{d})$ is a Sylow B-subpair. Theorem 5 in [1] corresponds to our theorem above. Theorem 2.5. Under Situation (XY) the module $L(B, C)$ is splendid with respect to $X$ and $Y$, namely $L(B, C) \cdot X\otimes_{kD}Y^{*}$. The theorem above and the following, which states that the relatively projective elements associated with tensor products ofthe bimodules $L,$ $X$ and $Y$, includng such as $X^{*}\otimes_{B}L\otimes_{C}Y$, are all inverible, lead us Theorem 2.8, which is one of our main theorems. Theorem 2.6. Under Situation (XY) the relatively projective elements (i) $\pi_{l\otimes_{c}y\in Z(B),\pi_{Y^{*}\otimes cl^{r}}}\in Z(kD)$ (ii) $\pi_{x^{*}\otimes sl\theta cy\in Z(kD),\pi_{X\otimes pl}}\cdot\in Z(kD)$ (iii) $\pi_{y^{c}\otimes_{c}l^{s}\phi px}\in Z(kD),$ $\pi_{l\cdot\otimes sx}\in Z(C)$

17 are all invertible. Propo$s$ition 2.7. Under Situation (XY) we have thefollowing commutative diagram: $H^{*}(G, B;X)rightarrow^{\delta_{D}}HH_{X^{r}}^{*}(kD)\mapsto_{R_{X^{*}}}^{R\chi}HH_{X}^{*}(B)$ $HH^{*}X^{*}\otimes pl\otimes_{c}y_{r_{x}}(kd)r_{r_{l}}^{r_{x}}j,j\vert\square II^{R_{L^{*}}}HH_{L\otimes c_{r_{l^{*}}r_{l}}^{r^{(b)-hh_{l}^{*}(b)}}}^{*}$ $HH_{Y^{*}\otimes cl^{*}\otimes gx}(kd)r\phi_{\gamma*}hh_{l^{*}}^{*}(c)\cap HH_{Y}^{*}(C)arrow*HH_{L}^{*},(C)[[$ $H^{*}(H, C;Y)rightarrow_{\delta_{D}}HH_{Y^{*}}^{*}(kD)m_{R_{Y^{*}}}^{R\gamma}HH_{Y}^{*}(C)$ Theorem 2.8. Let be a block ideal of $kg$ and $D\leq G$ a defect grvup of B. Assume that a subgroup $H$ of containing $DC_{G}(D)$ normalizes a subgroup of $Q$ $D$ and contains $QC_{G}(Q)$. Let $(D, b_{d})$ be a Sylow B-subpair and let $(Q, b_{q})\leq(d, b_{d})$. Let be a $C$ unique block ideal $ofkh$ covering the block ideal $b_{q}ofkqc_{g}(q)$. Then $C^{G}=B$ andd is a defect group of $C$ ; hence $(D, b_{d})$ Let $j$ is also a Sylow C-subpair. be a source idempotent of such that $C$ $Br_{D}(j)e_{D}=Br_{D}O)$, where $e_{d}\in kc_{g}(d)$ is the block idempotent ofthe block ; let $Y=kHj$. Let $b_{d}$ $X$ be a source module of which is the Green correspondent of with respect to. $Y$ $(G\cross D^{op}, \Delta D, H\cross D^{op})$ We $letl=l(b, C)$. Then thefollowing diagram commutes: $H(HH^{*}(kD)\rangle\varpi_{\chi s}hh_{l\otimes Y}^{*}(B)ffI^{c_{R_{L^{*}}}}\underline{\delta_{D}}R\chi$ $H^{*}(H, C;Y)rightarrow_{\delta_{D}}HH_{\gamma*}^{*}(kD)R_{R_{Y^{*}}}^{R\gamma}HH_{Y}^{*}(C)$ 3 Block varieties of modules and Green correspondence If $H^{*}(G, B;X)\subseteq H^{*}(H, C;Y)$, then Kawai and Sasaki [4, Theorem 1.3 $(i)$ ] says that the $\iota$ inclusion map : $H^{*}(G, B;X)arrow H^{*}(H, C;Y)$ induces a map $su\dot{\eta}ective$ $\iota^{*}:$ $V_{H,C}arrow V_{G,B}$ of varieties. Throughout this section we let $P\leq D$ and assume that $H\geq N_{G}(P)$. We investigate relationship between the varieties of modules in blocks and which are under Green $C$ correspondence. We first note Under Situation (BC) that to tensor with $L(B, C)$ and $L(B, C)$ induces the Green correspondence.

18 Proposition 3.1. Under Situation (BC), we let $L=L(B, C)$. If an indecomposable B- module $U$ $\nu^{r}$ and an indecomposable C-module have vertices in $d(g, P, H)$ and are in the Green correspondence with respect to $(G, P, H)$, then $L\otimes cv\equiv U\oplus_{\iota}O(\ovalbox{\tt\small REJECT}(G, P, H))$ $L^{*}\otimes_{B}U\equiv V\oplus O(\Psi(G, P, H))$. The block variety of an indecomposable module is determined by particular vertex and a particular source by Benson and Linckelmam [2]. Definidon 3.1. (Benson and Linckelmann [2, Proposition 2.5]) Let $X$ be a source module of a block ideal. Let be an $U$ indecomposable B-module. There exists a vertex of such $Q$ $U$ that $Q\leq D,$ $U X\otimes_{kQ}X^{*}\otimes_{B}U$. We would like to call such a vertex $Q$ of $U$ an X-vertex. For an X-vertex $Q$ of $U$ we can take a Q-source $S$ of $U$ such that $S kqx^{*}\otimes_{b}u,$ We would like to call such a source a $(Q, X)$-source. $U X\otimes_{kQ}S$ [2, Theorem 1.1] says that the block variety $V_{G,B}(U)$ in the block cohomology $H^{*}(G,$ $B;X\gamma$ is the pull back of the variety $V_{Q}(S)$ of $S$, where $Q$ is an X-vertex and $S$ is a $(Q, X)$-source of $U$. Proposition 3.2. Under Situation (XY), let $U$ and $V$ be as in Proposition 3.1. Then the following hold. (i) If $Q\in d(g, P, H)$ is a Y-vertex of Vand is a $S$ $(Q, Y)$-source of $V$, then is an $Q$ X-vertex of and is a $U$ $S$ $(Q, X)\prime source$ of. $U$ (ii) If $Q\in \mathscr{a}(g, P, H)$ is an X-vertex of and $U$ is a -source of $S$ $(Q, X^{\neg})$ $U$, then is a $Q$ $V$ Y-vertex of and is a $S$ $(Q, Y)$-source of. $V$ It is well known that the Green correspondent ofan indecomposable module lies in a block ideal of a subgroup of lies in its Brauer correspondent. The following is a partial converse to this fact. Proposition 3.3. Under Situatim (XY), assume that an indecomposable B-module has $U$ an X-vertex belonging to $d(g, P, H)$. Then the Green correspondent $V$ of $U$ with nespect to $(G, P, H)$ lies in the block $C$. The following is our main theorem. Theorem 3.4. Under Situation (XY) assume that $H^{*}(G, B;X)\subseteq H^{*}(H, C;Y)$. (i) Assume that an indecomposable B-module $U$ has an X-vertex belonging to $d(g, P, H)$. Then the Green correspondent Vof $U$ with respect to $(G, P, H)$ lies in the block $C$ and $V_{G,B}(U)=\iota^{*}V_{H,C}(V)$.

19 (ii) Assume that an indecomposable C-module $V$ has a Y-vertex belonging to $d(g, P, H)$. Then the Green correspondent $U$ of $V$ with respect to $(G, P, H)$ lies in the block and $V_{G,B}(U)=\iota^{*}V_{H,C}(\gamma^{r})$. Example. (cf [2, Corollary 1.4]) Let be a block ideal of $kg$ and $D\leq G$ a defect group of. Let $X$ be a source module of. Let $U$ be an indecomposable B-module and $Q$ an X-vertex of $U$ and $S$ a $(Q, X)$-source of $U$. Assume that the X-vertex $Q$ of $U$ in normal in $D$ and let $H=N_{G}(Q)$. Let $P\leq D$ and assume that $H\geq N_{G}(P)$ and that $Q\in \mathscr{a}(g, P, H)$. Let $(D, b_{d})$ be a Sylow B-subpair such that $b_{d}x(d)=x(d)$ and let $(Q, b_{q})\leq(d, b_{d})$. Let $C$ be a unique block of $khcover\dot{i}g$ the block $b_{q}$. Then we have (i) $H^{*}(G, B)\subseteq H^{*}(H, C)$ ; (ii) $Q$ is a Y-vertex of $V$ and $S$ is a $(Q, Y)$-source of $V$ ; (iii) $V$ lies in $C$ and $V_{G,B}(U)=\iota^{*}V_{H,C}(V)$. references [1] J. L. Alperin, M. Linckelmann, and R. Rouquier, Source algebras and source modules, J. Algebra 239 (2001), no. 1, 262-271. [2] D. J. Benson and M. Linckelmann, Vertex and source determine the block variety of an $inde\infty mposable$ module, J. Pure Appl. Algebra 197 (2005), 11-17. [3] M. Brou6, On representations of symlnetric algebras: an introduction, Notes by M. Stricker, Mathematik Departnent ETH ZUrich, 1991. [4] H. Kawai and H. Sasaki, Cohomology algebras ofblocks offinite groups and Brauer correspondence, Algebr. Represent. Theory 9 (206), no. 5, 497-511. [5] R. Kessar, M. Linckelmann, and G. R. Robinson, Local control in fusion systems ofp-blocks offinite youps, J. Algebra 257 (2002), no. 2, $393A13$. [6] M. Linckelmam, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), 107-135. [7], Varieties in block theory, J. Algebra 215 (1999), $460A80$. [8], On splendid derived and stable equivalences between blocks of finite groups., J. Algebra (2001), $81k843$.