Test of Mathematics for University Admission. Specification for October 2018

Similar documents
CAMBRIDGE IGCSE MATHS EXAMINATION BOARD COVERAGE

The Grade Descriptors below are used to assess work and student progress in Mathematics from Year 7 to

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Scope and Sequence: National Curriculum Mathematics from Haese Mathematics (7 10A)

Brockington College Mathematics Personal Learning Checklist

Mathematics KSHSSA Key Stage 3 Grade Descriptors

2 year GCSE Scheme of Work

FOUNDATION MATHS REVISION CHECKLIST (Grades 5 1)

Unit 3: Number, Algebra, Geometry 2

YEAR 9 SCHEME OF WORK - EXTENSION

ENGINEERING ADMISSIONS ASSESSMENT CONTENT SPECIFICATION

Paper 1 Foundation Revision List

YEAR 12 - Mathematics Pure (C1) Term 1 plan

grasp of the subject while attaining their examination objectives.

Year 9 Mastery Statements for Assessment 1. Topic Mastery Statements - I can Essential Knowledge - I know

Mathematics 6 12 Section 26

Understand the difference between truncating and rounding. Calculate with roots, and with integer and fractional indices.

Maths Years 9 to 10. Boardworks Maths Years 9 to 10. Presentations: 3-D problems 9 slides. Algebraic fractions 22 slides

HIGHER MATHS REVISION CHECKLIST (Grades 9 4)

SAMPLE COURSE OUTLINE MATHEMATICS METHODS ATAR YEAR 11

Applied Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman

TEACHER CERTIFICATION EXAM 1.0 KNOWLEDGE OF ALGEBRA Identify graphs of linear inequalities on a number line...1

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Key competencies (student abilities)

Curriculum Map for Mathematics SL (DP1)

YEAR 10 PROGRAM TERM 1 TERM 2 TERM 3 TERM 4

MAP 2302 MAP 4103 MAE 3920 MAE 4360 MAS 4301 MAS Introduction to Abstract Algebra I. Introduction to Abstract Algebra

Mathematics. GCSE subject content and assessment objectives

T a b l e o f C o n t e n t s

GCSE Linear Targeting Grade A*

Mapping Australian Curriculum (AC) Mathematics and VELS Mathematics. Australian Curriculum (AC) Year 9 Year 10/10A

Mathematics skills framework

MATHEMATICAL SUBJECTS Mathematics should be visualised as the vehicle for aiding a student to think, reason, analyse and articulate logically.

Global Context Statement of Inquiry MYP subject group objectives/assessment

Year 8 Autumn Term Topics Covered Calculations Ratio, Proportion and Compound Measures Manipulating Algebraic Expressions Fractions

Department Curriculum Map

Common Core Edition Table of Contents

KRANJI SECONDARY SCHOOL

MATHEMATICS SYLLABUS SECONDARY 4th YEAR

How well do I know the content? (scale 1 5)

Integrated Math II Performance Level Descriptors

9-12 Mathematics Vertical Alignment ( )

STAAR STANDARDS ALGEBRA I ALGEBRA II GEOMETRY

Appendix C: Event Topics per Meet

Mathematics programmes of study: key stage 3. National curriculum in England

Grade 11 Pre-Calculus Mathematics (1999) Grade 11 Pre-Calculus Mathematics (2009)

GCE MATHEMATICS. Ordinary Level (Syllabus 4016) CONTENTS. Page GCE ORDINARY LEVEL MATHEMATICS MATHEMATICAL FORMULAE 11 MATHEMATICAL NOTATION 12

Integers, Fractions, Decimals and Percentages. Equations and Inequations

Copyright 2018 UC Regents and ALEKS Corporation. ALEKS is a registered trademark of ALEKS Corporation. 2/10

The Learning Objectives of the Compulsory Part Notes:

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Algebra I and Geometry to Moving with Math SUMS Moving with Math SUMS Algebra 1

Mathematics AKS

The aim of this section is to introduce the numerical, graphical and listing facilities of the graphic display calculator (GDC).

Core Mathematics C1 (AS) Unit C1

BRADFIELD COLLEGE. IGCSE Mathematics. Revision Guide. Bradfield College Maths Department. 1 P age

The Australian Curriculum Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0)

Math Review for AP Calculus

Algebra II Crosswalk. Red font indicates a passage that is not addressed in the compared sets of standards.

PreCalculus. Curriculum (447 topics additional topics)

King s Year 12 Medium Term Plan for LC1- A-Level Mathematics

Rearrange m ore complicated formulae where the subject may appear twice or as a power (A*) Rearrange a formula where the subject appears twice (A)

Teachers' Guide for GCSE Mathematics Numeracy and GCSE Mathematics

Pre-Algebra (7) B Mathematics

MATHEMATICS. GCE ORDINARY LEVEL (2016) (Syllabus 4048) (To be implemented from year of examination 2016)

Integrated Mathematics I, II, III 2016 Scope and Sequence

Content Guidelines Overview

Year 12 Maths C1-C2-S1 2016/2017

Bringing Maths to life

Math Prep for Statics

PURE MATHEMATICS AM 27

crashmaths Schemes of Work New A Level Maths (2017)

PURE MATHEMATICS AM 27

Free download from not for resale. Apps 1.1 : Applying trigonometric skills to triangles which do not have a right angle.

Latest Syllabus - NMO

TEACHER NOTES FOR ADVANCED MATHEMATICS 1 FOR AS AND A LEVEL

BUILT YOU. ACT Pathway. for

Sp Assume: Previous coverage up to Level 8

ADDITIONAL MATHEMATICS

Year 12 Maths C1-C2-S1 2017/2018

OKLAHOMA SUBJECT AREA TESTS (OSAT )

CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

MATHEMATICS. Higher 2 (Syllabus 9740)

College Algebra with Trigonometry

Copyright 2016 Pearson Education, Inc. or its affiliates. All rights reserved. NES, the NES logo, Pearson, the Pearson logo, and National Evaluation

General and Specific Learning Outcomes by Strand Applied Mathematics

WEST AFRICAN SENIOR SCHOOL CERTIFICATE EXAMINATION FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

ANNUAL NATIONAL ASSESSMENT 2014 ASSESSMENT GUIDELINES MATHEMATICS GRADE 9

Integrated Mathematics II

Mesaieed International School

Test at a Glance (formerly known as the Praxis II) Test Breakdown

Prentice Hall Geometry (c) 2007 correlated to American Diploma Project, High School Math Benchmarks

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words.

Integrated Math 3 Math 3 Course Description:

Histogram, cumulative frequency, frequency, 676 Horizontal number line, 6 Hypotenuse, 263, 301, 307

CAMI Education linked to CAPS: Mathematics

Region 16 Board of Education. Precalculus Curriculum

Purposeful Design Publications. Intermediate Mathematics Series Scope and Sequence

Secondary 1 - Secondary 3 CCSS Vocabulary Word List Revised Vocabulary Word Sec 1 Sec 2 Sec 3 absolute value equation

WEST AFRICAN SENIOR SCHOOL CERTIFICATE EXAMINATION MATHEMATICS (CORE)/GENERAL MATHEMATICS

Transcription:

Test of Mathematics for University Admission Specification for October 2018

Structure of the Test The test will consist of two 75 minute papers, taken one after the other. Each paper will consist of 20 multiple-choice questions. Questions across the two papers carry equal weight and there will be no penalty for incorrect answers, so candidates are advised to attempt all questions. There is no formulae booklet for this test; students are expected to understand and recall all relevant formulae. Candidates may not use calculators. The details of the papers are as follows: Paper 1: Mathematical Knowledge and Application Time: 75 minutes Content: 20 multiple-choice questions Requirements: Section 1 below This paper will test the candidate s ability to apply their mathematical knowledge in a variety of contexts. Candidates will be expected to know and use the mathematical content set out in Section 1 below. Paper 2: Advanced Mathematical Thinking Time: 75 minutes Content: 20 multiple-choice questions Requirements: Sections 1 and 2 below This paper will test the candidate s ability to apply their conceptual knowledge to constructing and analysing mathematical arguments. For this paper candidates are expected to be familiar with the contents of Sections 1 and 2 below. UCLES 2018 2

SECTION 1 This section sets out the mathematical knowledge requirement for both papers of the test. The content of Part 1 is almost all covered within the pure mathematics specification of an AS level in mathematics, and the content of Part 2 is almost all covered within a Higher Level GCSE mathematics course. There is some duplication of content across Parts 1 and 2. Candidates are advised to read through these specifications carefully to ensure they are aware of all topics and areas that might be covered in the test. Part 1 Algebra and functions AF1 AF2 AF3 AF4 AF5 AF6 Laws of indices for all rational exponents. Use and manipulation of surds; simplifying expressions that contain surds, including 5 rationalising the denominator; for example, simplifying, and 3. 3+2 5 7 2 3 Quadratic functions and their graphs; the discriminant of a quadratic function; completing the square; solution of quadratic equations. Simultaneous equations: analytical solution by substitution, e.g. of one linear and one quadratic equation. Solution of linear and quadratic inequalities. Algebraic manipulation of polynomials, including: Expanding brackets and collecting like terms; Factorisation and simple algebraic division (by a linear polynomial, including those of the form aaaa + bb, and by quadratics, including those of the form aaxx 2 + bbbb + cc); Use of the Factor Theorem and the Remainder Theorem. AF7 Qualitative understanding that a function is a many-to-one (or sometimes just a oneto-one) mapping. Familiarity with the properties of common functions, including ff(xx) = xx (which always means the positive square root ) and ff(xx) = xx Sequences and series SE1 SE2 SE3 SE4 Sequences, including those given by a formula for the nn th term and those generated by a simple recurrence relation of the form xx nn+1 = ff(xx nn ). Arithmetic series, including the formula for the sum of the first nn natural numbers. The sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of rr < 1. Binomial expansion of (1 + xx) nn for positive integer nn, and for expressions of the form aa + ff(xx) nn for positive integer nn and simple ff(xx); the notations nn! and nn rr. UCLES 2018 3

Coordinate geometry in the (xx, yy) plane CG1 Equation of a straight line, including yy yy 1 = mm(xx xx 1 ) and aaaa + bbbb + cc = 0; conditions for two straight lines to be parallel or perpendicular to each other; finding equations of straight lines given information in various forms. CG2 Coordinate geometry of the circle: using the equation of a circle in the forms (xx aa) 2 + (yy bb) 2 = rr 2, and xx 2 + yy 2 + cccc + dddd + ee = 0. CG3 Use of the following circle properties: Trigonometry The perpendicular from the centre to a chord bisects the chord; The tangent at any point on a circle is perpendicular to the radius at that point; The angle subtended by an arc at the centre of a circle is twice the angle subtended by the arc at any point on the circumference; The angle in a semicircle is a right angle; Angles in the same segment are equal; The opposite angles in a cyclic quadrilateral add to 180 ; The angle between the tangent and chord at the point of contact is equal to the angle in the alternate segment. TR1 TR2 The sine and cosine rules, and the area of a triangle in the form 1 aaaa sin CC. 2 The sine rule includes an understanding of the ambiguous case (angle-side-side). Problems might be set in 2- or 3-dimensions. Radian measure, including use for arc length and area of sector and segment. TR3 The values of sine, cosine, and tangent for the angles 0, 30, 45, 60, 90. TR4 TR5 TR6 The sine, cosine, and tangent functions; their graphs, symmetries, and periodicity. Knowledge and use of tan θθ = sin θθ cos θθ and sin2 θθ + cos 2 θθ = 1. Solution of simple trigonometric equations in a given interval (this may involve the use of the identities in TR5); for example: tan xx = 1 for ππ < xx < ππ; 3 sin 2 2xx + ππ = 1 for 2ππ < xx < 2ππ; 12 3 2 cos2 xx + 6 sin xx 10 = 2 for 0 < xx < 360. UCLES 2018 4

Exponentials and Logarithms EL1 EL2 yy = aa xx and its graph, for simple positive values of aa. Laws of logarithms: aa bb = cc bb = log aa cc log aa xx + log aa yy = log aa (xxxx) log aa xx log aa yy = log aa xx yy including the special cases: kk log aa xx = log aa xx kk log aa 1 xx = log aa xx log aa aa = 1 Questions requiring knowledge of the change of base formula will not be set. EL3 The solution of equations of the form aa xx = bb, and equations which can be reduced to this form, including those that need prior algebraic manipulation; for example, 3 2xx = 4 and 25 xx 3 5 xx + 2 = 0. Differentiation DF1 The derivative of ff(xx) as the gradient of the tangent to the graph yy = ff(xx) at a point. In addition: Interpretation of a derivative as a rate of change; Second-order derivatives; Knowledge of notation: dddd dddd, dd2 yy dddd 2, ff (xx), and ff (xx). Differentiation from first principles is excluded. DF2 DF3 Differentiation of xx nn for rational nn, and related sums and differences. This might require some simplification before differentiating; for example, the ability to differentiate an expression such as (3xx+2)2 could be required. xx 1 2 Applications of differentiation to gradients, tangents, normals, stationary points (maxima and minima only), increasing [ ff (xx) 0 ] and decreasing [ ff (xx) 0 ] functions. Points of inflexion will not be examined, although students are expected to have a qualitative understanding of points of inflexion in the curves of simple polynomial functions. UCLES 2018 5

Integration IN1 IN2 IN3 IN4 IN5 Definite integration as related to the area between a curve and an axis. Candidates are expected to understand the difference between finding a definite integral and finding the area between a curve and an axis. Integrals could be given with respect to xx or with respect to yy. Finding definite and indefinite integrals of xx nn for nn rational, nn 1, and related sums and differences, including expressions which require simplification prior to integrating; for example, (xx + 2) 2 dddd, and (3xx 5)2 An understanding of the Fundamental Theorem of Calculus and its significance to integration. Simple examples of its use may be required in the two forms, bb ff(xx) dddd = FF(bb) FF(aa), where FF (xx) = ff(xx), and dd aa dddd xx aa ff(tt) dddd = ff(xx). xx 1 2 dddd. Combining integrals with either equal or contiguous ranges; 5 5 5 for example, ff(xx) dddd + gg(xx) dddd = [ff(xx) + gg(xx)] dddd, 4 2 2 3 4 and ff(xx) dddd + ff(xx) dddd = ff(xx) dddd. 2 3 2 Approximation of the area under a curve using the trapezium rule; determination of whether this constitutes an overestimate or an underestimate. 2 IN6 Solving differential equations of the form Graphs of Functions dddd dddd = ff(xx). GF1 GF2 GF3 GF4 GF5 GF6 GF7 Recognise and be able to sketch the graphs of common functions that appear in this specification: these include lines, quadratics, cubics, trigonometric functions, logarithmic functions, exponential functions, square roots, and the modulus function. Knowledge of the effect of simple transformations on the graph of yy = ff(xx) as represented by yy = aaaa(xx), yy = ff(xx) + aa, yy = ff(xx + aa), yy = ff(aaaa), with the value of aa positive or negative. Compositions of these transformations. Understand how altering the values of mm and cc affects the graph of yy = mmmm + cc. Understand how altering the values of aa, bb and cc in yy = aa(xx + bb) 2 + cc affects the corresponding graph. Use differentiation to help determine the shape of the graph of a given function; this might include finding stationary points (excluding inflexions) as well as finding when the function is increasing or decreasing. Use algebraic techniques to determine where the graph of a function intersects the coordinate axes; appreciate the possible numbers of real roots a general polynomial can possess. Geometric interpretation of algebraic solutions of equations; relationship between the intersections of two graphs and the solutions of the corresponding simultaneous equations. UCLES 2018 6

Part 2 Number Order, add, subtract, multiply and divide whole numbers, integers, fractions, decimals, and numbers in index form. Use the concepts and vocabulary of factor, multiple, common factor, highest common factor (hcf), least common multiple (lcm), composite (i.e. not prime), prime number, and prime factor decomposition. Use the terms square, positive and negative square root, cube and cube root. Use index laws to simplify, multiply, and divide integer, fractional, and negative powers. Interpret, order, and calculate with numbers written in standard index form. Understand equivalent fractions. Convert between fractions, decimals, and percentages. Understand and use percentage including repeated proportional change and calculating the original amount after a percentage change. Understand and use direct and indirect proportion. Use ratio notation including dividing a quantity in a given ratio, and solve related problems (using the unitary method). Understand and use number operations, including inverse operations and the hierarchy of operations. Use surds and π in exact calculations; simplify expressions that contain surds, including rationalising the denominator. Calculate upper and lower bounds to contextual problems. Approximate to a specified and appropriate degree of accuracy, including rounding to a given number of decimal places or significant figures. Know and use approximation methods to produce estimations of calculations. UCLES 2018 7

Algebra Distinguish between the different roles played by letter symbols. Manipulate algebraic expressions by collecting like terms; by multiplying a single term over a bracket; by expanding the product of two linear expressions. Use index laws in algebra for multiplication and division of integer, fractional, and negative powers. Know and use of aa bb cc = aa bbbb Set up and solve linear equations, including simultaneous equations in two unknowns. Factorise quadratics, including the difference of two squares. Simplify rational expressions by cancelling or factorising. Set up quadratic equations and solve them by factorising. Set up and use equations to solve problems involving direct and indirect proportion. Derive a formula, substitute into a formula. Change the subject of a formula. Solve linear inequalities in one or two variables. Generate terms of a sequence using term-to-term and position-to-term definitions. Use linear expressions to describe the nn th term of a sequence. Use Cartesian coordinates in all 4 quadrants. Recognise the equations of straight lines; understand yy = mmmm + cc and the gradients of parallel and perpendicular lines. Understand that the intersection of graphs can be interpreted as giving the solutions to simultaneous equations. Solve simultaneous equations, where one is linear and one is quadratic. Recognise and interpret graphs of quadratic functions, simple cubic functions, the reciprocal function, trigonometric functions and the exponential function yy = kk xx for simple positive values of kk. Construct linear functions from real-life problems; interpret graphs modelling real situations. UCLES 2018 8

Geometry Recall and use properties of angles at a point, on a straight line, perpendicular lines and opposite angles at a vertex. Understand and use the angle properties of parallel lines, intersecting lines, triangles and quadrilaterals. Calculate and use the sums of the interior and exterior angles of polygons. Recall the properties and definitions of special types of quadrilateral. Recognise and use reflectional and rotational symmetry of 2-dimensional shapes. Understand congruence and similarity. Use Pythagoras theorem in 2-dimensions and 3-dimensions. Understand and construct geometrical proofs, including using circle theorems: The perpendicular from the centre to a chord bisects the chord; The tangent at any point on a circle is perpendicular to the radius at that point; The angle subtended by an arc at the centre of a circle is twice the angle subtended at any point on the circumference; The angle in a semicircle is a right-angle; Angles in the same segment are equal; The opposite angles in a cyclic quadrilateral add to 180 ; The angle between the tangent and chord at the point of contact is equal to the angle in the alternate segment. Use 2-dimensional representations of 3-dimensional shapes. Describe and transform 2-dimensional shapes using single or combined rotations, reflections, translations, or enlargements, including the use of vector notation. Understand and be able to use the standard trigonometric ratios: sin, cos, and tan. Measures Calculate perimeters and areas of shapes made from triangles, rectangles and other shapes. Find circumferences and areas of circles, including arcs, segments and sectors. Calculate the volumes and surface areas of right prisms, pyramids, spheres, cylinders, cones and solids made from cubes and cuboids (formulae will be given for the sphere and cone). Use vectors, including the sum of two vectors, algebraically and graphically. Use and interpret maps and scale drawings. Understand and use the effect of enlargement for perimeter, area, and volume of shapes and solids. Convert measurements from one unit to another, including between imperial and metric (conversion factors will be given for imperial/metric conversions). Knowledge of the SI prefixes milli (m), centi (c), deci (d), and kilo (k) when used in connection with any SI unit. Recognise the inaccuracy of measurement. Understand and use three-figure bearings. Understand and use compound measures. UCLES 2018 9

Statistics Identify possible sources of bias. Identify flaws in data collection sheets and questionnaires in an experiment or a survey. Group, and understand, discrete and continuous data. Extract data from lists and tables. Design and use two-way tables. Interpret bar charts, pie charts, grouped frequency diagrams, line graphs, and frequency polygons. Interpret cumulative frequency tables and graphs, box plots, and histograms (including unequal class width). Calculate and interpret mean, median, mode, modal class, range, and inter-quartile range, including the estimated mean of grouped data. Calculate average rates when combining samples or events, including solving problems involving average rate calculations (e.g. average survival rates in different wards of different sizes, average speed of a car over a journey where it has travelled at different speeds). Interpret scatter diagrams and recognise correlation; using lines of best fit. (The calculation of regression lines is not required.) Compare sets of data by using statistical measures or by interpreting graphical representations of their distributions. Probability Understand and use the vocabulary of probability and the probability scale. Understand and use estimates or measures of probability, including relative frequency and theoretical models. List all the outcomes for single and combined events. Identify different mutually exclusive outcomes and know that the sum of the probabilities of all these outcomes is 1. Construct and use Venn diagrams to solve union and intersection categorisation problems and determine probabilities when required. Familiarity with the meaning and use of the terms union, intersection, and complement is required. The mathematical notation for these (AA BB, AA BB, and AA or AA cc ) will not be required. Know when to add or multiply two probabilities. Understand the use of tree diagrams to represent outcomes of combined events: when the probabilities are independent of the previous outcome; when the probabilities are dependent on the previous outcome. Compare experimental and theoretical probabilities. Understand that if an experiment is repeated, the outcome may be different. UCLES 2018 10

SECTION 2 This section sets out the scope of Paper 2. Paper 2 tests the candidate s ability to think mathematically: the paper will focus on testing the candidate s ability to understand, and construct, mathematical arguments in a variety of contexts. It will draw on the mathematical knowledge outlined in SECTION 1 above. The Logic of Arguments Arg1 Understand and be able to use mathematical logic in simple situations: The terms true and false; The terms and, or (meaning inclusive or), not; Statements of the form: if A then B A if B A only if B A if and only if B The converse of a statement; The contrapositive of a statement; The relationship between the truth of a statement and its converse and its contrapositive. Note: candidates will not be expected to recognise or use symbolic notation for any of these terms, nor will they be expected to complete formal truth tables. Arg2 Understand and use the terms necessary and sufficient. Arg3 Understand and use the terms for all, for some (meaning for at least one), and there exists. Arg4 Be able to negate statements that use any of the above terms. Mathematical Proof Prf1 Follow a proof of the following types, and in simple cases know how to construct such a proof: Direct deductive proof ( Since A, therefore B, therefore C,, therefore Z, which is what we wanted to prove. ); Proof by cases (for example, by considering even and odd cases separately); Proof by contradiction; Disproof by counterexample. Prf2 Prf3 Prf4 Prf5 Deduce implications from given statements. Make conjectures based on small cases, and then justify these conjectures. Rearrange a sequence of statements into the correct order to give a proof for a statement. Problems requiring a sophisticated chain of reasoning to solve. UCLES 2018 11

Identifying Errors in Proofs Err1 Err2 Identifying errors in purported proofs. Be aware of common mathematical errors in purported proofs; for example, claiming if aaaa = aaaa, then bb = cc or assuming if sin AA = sin BB, then AA = BB neither of which are valid deductions. UCLES 2018 12

Cambridge Assessment Admissions Testing offers a range of tests to support selection and recruitment for higher education, professional organisations and governments around the world. Underpinned by robust and rigorous research, our assessments include: assessments in thinking skills admissions tests for medicine and healthcare behavioural styles assessment subject-specific admissions tests. We are part of a not-for-profit department of the University of Cambridge. Cambridge Assessment Admissions Testing The Triangle Building Shaftesbury Road Cambridge CB2 8EA United Kingdom Admissions tests support: www.admissionstesting.org/help UCLES 2018 13