Homology lens spaces and Dehn surgery on homology spheres

Similar documents
The Classification of Nonsimple Algebraic Tangles

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

SURGERY ON A KNOT IN SURFACE I

MATH 215B HOMEWORK 4 SOLUTIONS

Some non-trivial PL knots whose complements are homotopy circles

On boundary primitive manifolds and a theorem of Casson Gordon

A NOTE ON E 8 -INTERSECTION FORMS AND CORRECTION TERMS

Math 6510 Homework 10

Part II. Algebraic Topology. Year

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher

EMBEDDINGS OF TOPOLOGICAL MANIFOLDS

arxiv: v1 [math.gt] 5 Aug 2015

ON UNIQUENESS OF ESSENTIAL TANGLE DECOMPOSITIONS OF KNOTS WITH FREE TANGLE DECOMPOSITIONS

CLASSIFICATION OF TIGHT CONTACT STRUCTURES ON SURGERIES ON THE FIGURE-EIGHT KNOT

ON KIRBY CALCULUS FOR NULL-HOMOTOPIC FRAMED LINKS IN 3-MANIFOLDS

An introduction to cobordism

NON-TRIVIALITY OF GENERALIZED ALTERNATING KNOTS

Lecture 4: Knot Complements

Homotopy and homology groups of the n-dimensional Hawaiian earring

Cutting and pasting. 2 in R. 3 which are not even topologically

ON LINKING SIGNATURE INVARIANTS OF SURFACE-KNOTS

The coincidence Nielsen number for maps into real projective spaces

30 Surfaces and nondegenerate symmetric bilinear forms

DIFFEOMORPHISMS OF SURFACES AND SMOOTH 4-MANIFOLDS

arxiv: v2 [math.gt] 28 Feb 2017

A Theorem of Sanderson on Link Bordisms in Dimension 4

Bundles, handcuffs, and local freedom

3-manifolds and their groups

32 Proof of the orientation theorem

Introduction to surgery theory

Generalized crossing changes in satellite knots

Trisections in three and four dimensions DALE R. KOENIG. B.S. (University of California, Davis) 2011 DISSERTATION

arxiv: v1 [math.gt] 31 Dec 2015

Seifert fibered surgeries with distinct primitive/seifert positions

On the K-category of 3-manifolds for K a wedge of spheres or projective planes

PERFECT SUBGROUPS OF HNN EXTENSIONS

CLOSED (J-I)-CONNECTED (2J+1)-MANIFOLDS, s = 3, 7.

arxiv: v6 [math.gt] 8 May 2017

BRAID GROUPS ALLEN YUAN. 1. Introduction. groups. Furthermore, the study of these braid groups is also both important to mathematics

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM. Contents

LONGITUDINAL SURGERY ON COMPOSITE KNOTS

FINITELY GENERATING THE MAPPING CLASS GROUP WITH DEHN TWISTS

DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS

GEOMETRY HW 12 CLAY SHONKWILER

2-string free tangles and incompressible surfaces

Handlebody Decomposition of a Manifold

Bordism and the Pontryagin-Thom Theorem

PSEUDO-ANOSOV MAPS AND SIMPLE CLOSED CURVES ON SURFACES

Geometry Qualifying Exam Notes

THE THEORY OF NORMAL SURFACES. based on Lecture Notes by Cameron McA. Gordon typeset by Richard P. Kent IV

Lecture 4: Stabilization

CW-complexes. Stephen A. Mitchell. November 1997

Tunnel Numbers of Knots

arxiv:math/ v1 [math.gt] 16 Aug 2000

Exotic spheres. Overview and lecture-by-lecture summary. Martin Palmer / 22 July 2017

We have the following immediate corollary. 1

Invariants of knots and 3-manifolds: Survey on 3-manifolds

On Non-compact Heegaard Splittings

BEN KNUDSEN. Conf k (f) Conf k (Y )

THE COMPLEX OF FREE FACTORS OF A FREE GROUP Allen Hatcher* and Karen Vogtmann*

PLANES IN 3-MANIFOLDS OF FINITE GENUS AT INFINITY. Bobby Neal Winters. 1. Introduction and Definitions

arxiv: v1 [math.gt] 10 Mar 2009

Algebraic Topology exam

MA441: Algebraic Structures I. Lecture 18

MATH8808: ALGEBRAIC TOPOLOGY

ANNALES MATHÉMATIQUES BLAISE PASCAL. Volume 13, n o 1 (2006), p < 13_1_31_0>

THE ASYMPTOTIC BEHAVIOUR OF HEEGAARD GENUS

arxiv: v1 [math.gt] 6 May 2007

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS

arxiv: v1 [math.gt] 20 Dec 2017

THE CLASSIFICATION OF TOROIDAL DEHN SURGERIES ON MONTESINOS KNOTS. Ying-Qing Wu 1

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected.

Jacobi Identities in Low-dimensional Topology

Some distance functions in knot theory

arxiv:math/ v1 [math.gt] 26 Sep 2005

Covering Invariants and Cohopficity of 3-manifold Groups

THE H-PRINCIPLE, LECTURE 14: HAEFLIGER S THEOREM CLASSIFYING FOLIATIONS ON OPEN MANIFOLDS

KNOTS WITH BRAID INDEX THREE HAVE PROPERTY-P

Topology and its Applications

Alexander polynomial, finite type invariants and volume of hyperbolic knots

Embeddings of lens spaces in 2 CP 2 constructed from lens space surgeries

SPINNING AND BRANCHED CYCLIC COVERS OF KNOTS. 1. Introduction

arxiv:dg-ga/ v2 7 Feb 1997

Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres

HYPERBOLIC GEOMETRY AND HEEGAARD SPLITTINGS

Math 6510 Homework 11

arxiv: v1 [math.gt] 15 Jul 2018

GENERALIZED PROPERTY R AND THE SCHOENFLIES CONJECTURE MARTIN SCHARLEMANN

ENDS OF MANIFOLDS: RECENT PROGRESS

All two dimensional links are null homotopic

arxiv:math/ v1 [math.gt] 5 Jul 2004

A NOTE ON STEIN FILLINGS OF CONTACT MANIFOLDS

Homework 4: Mayer-Vietoris Sequence and CW complexes

Cobordant differentiable manifolds

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

Transversal torus knots

MA4J2 Three Manifolds

Math 751 Week 6 Notes

The A-B slice problem

Transcription:

F U N D A M E N T A MATHEMATICAE 144 (1994) Homology lens spaces and Dehn surgery on homology spheres by Craig R. G u i l b a u l t (Milwaukee, Wis.) Abstract. A homology lens space is a closed 3-manifold with Z-homology groups isomorphic to those of a lens space. A useful theorem found in [Fu] states that a homology lens space M 3 may be obtained by an (n/1)-dehn surgery on a homology 3-sphere if and only if the linking form of M 3 is equivalent to (1/n). In this note we generalize this result to cover all homology lens spaces, and in the process offer an alternative proof based on classical 3-manifold techniques. 1. Introduction. Throughout this paper, all homology is with Z-coefficients. When α is an oriented closed curve in a manifold, we let [α] represent the corresponding homology element. When no confusion can arise, we leave it to the reader to choose an orientation. The following simple fact will make recognition of homology lens spaces and homology 3-spheres especially easy. Observation 1.1. Let M 3 be a closed, connected 3-manifold with H 1 (M 3 ) = Z n (n 1). Then H 3 (M 3 ) = Z (so M 3 is orientable) and H 2 (M 3 ) = 0. In particular, if n 2 then M 3 is a homology lens space, and if n = 1 then M 3 is a homology sphere. P r o o f. Duality implies that every orientable closed 3-manifold has trivial Euler characteristic. Using the orientable double cover, the same must be true for non-orientable closed 3-manifolds. By our hypothesis β 1 (M 3 ) = 0, so by arithmetic, β 3 (M 3 ) 0, and so M 3 is orientable. Duality and universal coefficients imply the triviality of H 2 (M 3 ). If M 3 is a homology lens space and H 1 (M 3 ) = n, we call M 3 a homology n-lens space. We say that M 3 is Z-homology equivalent to L(n, m) if there is a map f : M 3 L(n, m) which induces Z-homology isomorphisms in all dimensions. Since we cannot expect such maps to have homology inverses, 1991 Mathematics Subject Classification: 57N10, 57M25.

288 C. R. Guilbault we define two homology n-lens spaces to be Z-homology equivalent if there is a common lens space to which both are Z-homology equivalent. Observation 1.2. If M 3 is a homology n-lens space, then a map f : M 3 L(n, m) induces Z-homology isomorphisms in all dimensions iff deg(f) = 1. P r o o f. Suppose deg(f) = ±1. Then clearly f is an isomorphism in dimensions 0 and 3. Since degree ±1 maps induce surjections on first homology (see [Ol]) and since the first homology groups are finite, f is an isomorphism in dimension 1. All other homology groups are trivial. The reverse implication is obvious. The main result from [L-S], which is key to the present paper, may now be restated as follows: Theorem 1.3 (Luft Sjerve). Each homology lens space is Z-homology equivalent to a lens space L(n, m), which is uniquely determined up to homotopy equivalence. A classical theorem on lens spaces (see e.g. [Co], p. 96) states that L(n, m) and L(n, m ) are homotopy equivalent iff mm = ±b 2 (mod n) for some integer b. This gives a neat partition of actual lens spaces into homotopy equivalence classes. Theorem 1.3 says that these same classes form the foundation for a partition of homology lens spaces into Z-homology equivalence classes with each class containing at least one actual lens space. A more traditional way to distinguish between homology lens spaces is via the linking form λ : Torsion(H 1 (M 3 )) Torsion(H 1 (M 3 )) Q/Z. In our special case, λ may be represented by a 1 1 matrix (m/n) where n is the order of H 1 (M 3 ) and m is the intersection number between a generator [α] of H 1 (M 3 ) and a surface in M 3 with boundary consisting of n (oriented) copies of α. See [Fu] for details. Later it will be clear that the two approaches are equivalent. 2. Dehn surgery on homology spheres. Let T be a solid torus in S 3, and let α be a non-separating simple closed curve in T. If T is a solid torus disjoint from S 3, and g : T T is a homeomorphism taking a meridian of T onto α, we say that the adjunction space M = (S 3 int(t )) g T is the result of performing a Dehn surgery on T S 3. It is well known that the homeomorphism type of M is completely determined by α, and moreover, if µ is an oriented meridian of T and λ is the unique (up to isotopy) longitude of T which bounds a Seifert surface in S 3 int(t ) with some orientation chosen, then α uniquely determines relatively prime integers p, q such that [α] = [pµ + qλ] in H 1 ( T ). We call the corresponding surgery a (p/q)- Dehn surgery on T. Since p/q = ( p)/( q), the orientation chosen for α is

Homology lens spaces 289 insignificant. The following lemma shows, among other things, that we may extend this notation to Dehn surgery in a homology 3-sphere. Lemma 2.1. Let M 3 be a homology 3-sphere or a homology lens space, T M 3 be a solid torus whose core generates H 1 (M 3 ), and let X denote M 3 int(t ). Then: (a) H k (X) = Z if k = 0, 1 and H k (X) = 0 otherwise, (b) H 1 (X) is generated by a simple closed curve α in T, where, if M 3 is a homology sphere, α may be chosen to be a meridian of T, (c) there is an orientable surface F, properly embedded in X, such that F is connected and intersects α transversally in a single point. Moreover, F is uniquely determined up to isotopy in T, and (d) any simple closed curve γ in T which meets F transversally in a single point generates H 1 (X). P r o o f. Since core(t ) generates H 1 (M 3 ), H 1 (M, T ) = 0, so we have ( )... H 2 (M) H 2 (M, T ) H 1 (T ) H 1 (M) H 1 (M, T )... 0 Z Z n 0 This forces H 2 (M, T ) = Z. By excision, H 2 (X, X) = Z, so by duality H 1 (X) = Z. By universal coefficients Free(H 1 (X)) = Z. As H 1 (X, X) = 0, H 2 (X) = 0, so Torsion(H 1 (X)) = 0. Thus H 1 (X) = Z. Similarly H 2 (X) = H 1 (X, X) = Free(H 1 (X, X)) = 0. That H k (X) = 0 for k > 2 is clear. To verify (b), note that since H 1 (X, X) = 0, inclusion induces a surjection: H 1 ( X) H 1 (X). Therefore H 1 (X) is generated by a closed loop α in X. Since [α] is not divisible in H 1 (X), [α] is not divisible as an element of H 1 ( X), and thus may be represented by an embedded loop. If M 3 is a homology sphere, consider the Mayer Vietoris sequence... H 2 (M) H 1 ( T ) (i,j ) H 1 (T ) H 1 (X) H 1 (M)... 0 Z Z Z Z 0 Let ω be a meridian of T and τ an arbitrary longitude. Then i ([τ]) is a generator of H 1 (T ), and i ([ω]) = 0. Since (i, j ) is surjective, j ([ω]) must generate H 1 (X), so we may let α = ω. To find F, first construct a map f : X S 1 inducing an isomorphism on first homology and sending α homeomorphically onto S 1. Adjust f so that f α is a homeomorphism and there is a point x 0 S 1 at which f is transversal. Let F be he component of f 1 (x 0 ) which has non-empty boundary. By construction F is connected and intersects α transversally in a single point. Any other loop β in T can be expressed as [k α + l F ]

290 C. R. Guilbault in H 1 ( T ) for integers k and l. If β bounds an orientable surface embedded in X, then [β] = 0 = [ F ] and [α] 0 in H 1 (X), so k must be zero. Since β is embedded, l = 1, hence, β is isotopic to F in T. Now let γ be a simple closed curve in T which meets F transversally in a single point. Then [α] = [k γ + l F ] for some integers k, l. But F is null-homologous in X, so [α] = [kγ] in H 1 (X). Since [α] generates, so does [γ]. N o t e. In case M 3 is a homology sphere, T can be an arbitrary solid torus in M 3, and by (b) a meridian µ generates H 1 (X). Thus F is a longitude of T which we call the preferred longitude and denote by λ. We may now use the pair µ, λ to specify Dehn surgeries on T with fractions as promised earlier. 3. Main results Theorem 3.1. A 3-manifold M 3 is Z-homology equivalent to L(n, m) iff there exists a homology sphere Σ 3 and a solid torus T Σ 3 on which an (n/m)-dehn surgery yields M 3. P r o o f. Let f : M 3 L(n, m) be a Z-homology equivalence, and L(n, m) = V 1 V 2 be a genus 1 Heegard splitting, where a meridian ω 2 of V 2 is identified with a simple closed curve σ in V 1 homologous to mω 1 + nτ 1 where ω 1, τ 1 is a meridian-longitude pair for V 1. Notice that core(v i ) generates H 1 (L(n, m)) for each i. By [Wa] we may adjust f so that f 1 (V 2 ) is a solid torus T in M 3 and f T is a homeomorphism onto V 2. Then core(t ) generates H 1 (M 3 ). Adjusting f further, if necessary, we may assume that for a meridional disk D in V 1 with ω 1 = D, f 1 (D) is an orientable surface in M 3 int(t ). Let F be the component of this surface with F = f 1 (ω 1 ). Lemma 2.1 applies to X = M 3 int(t ), so H 1 (X) is generated by α = f 1 (τ 1 ). Attaching a solid torus T to X with a meridian being sent to α produces a homology sphere Σ 3. Removing T from Σ 3 and replacing it with T gives us M 3 again. Now α is a meridian of T, F is the preferred longitude of T in Σ 3, and f 1 (σ) (= f 1 (ω 2 )) is a meridian of T ; therefore, replacing T with T is an (n/m)-dehn surgery on Σ 3. For the reverse implication, let T Σ 3 be a solid torus in a homology sphere, µ a meridian of T, F a Seifert surface for T, λ = F the preferred longitude of T, and X = Σ 3 int(t ). Let M 3 be the manifold obtained by performing an (n/m)-dehn surgery which replaces T with T. Lemma 2.1 makes it easy to see that M 3 is a homology n-lens space. We now construct a degree ±1 map f : M 3 L(n, m). Let L(n, m) = V 1 V 2 as above. Let f T take T homeomorphically onto V 2 so that a meridian µ of T is taken to ω 2 (= σ) and λ is taken to ω 1 on V 1 (= V 2 ). This can be done since λ µ = m = ω 1 ω 2. Send F onto a meridional disk D in V 1 bounded

Homology lens spaces 291 by ω 1 by crushing out all but a collar on F. Extend this to take a product neighborhood, N(F ), of F in X to a product neighborhood, N(D), of D in V 1. Since V 1 int(n(d)) is a 3-ball we may extend this map to take the remainder of X into V 1 int(n(d)). Since f is a homeomorphism over V 2, deg(f) = 1. We now translate this result into one involving linking forms. Corollary 3.2 (Generalization of [Fu, Theorem 1]). A homology lens space M 3 has linking form equivalent to (m/n) for relatively prime integers m and n iff M 3 may be obtained by a single (n/m)-dehn surgery on a homology sphere. P r o o f. It is clear that a homology lens space created by an (n/m)- Dehn surgery on a homology sphere has linking form equivalent to (m/n). Now suppose M 3 has linking form (m/n). Then M 3 is a homology n-lens space which by Theorems 1.3 and 3.1 is Z-homology equivalent to L(n, m ) and may be obtained by an (n/m )-Dehn surgery on a homology sphere for some m. Then (m /n) also represents the linking form of M 3, so (m/n) and (m /n) are equivalent. We may conclude that mm = ±b 2 (mod n) for some integer b. It follows that L(n, m) and L(n, m ) are homotopy equivalent, so M 3 is Z-homology equivalent to L(n, m). By Theorem 3.1, M 3 may be obtained by an (n/m)-dehn surgery on a homology sphere. R e m a r k. It should now be obvious that our partition of homology lens spaces into Z-homology equivalence classes is the same as that obtained via linking forms. 4. Homology S 1 S 2 s. Since nearly all of machinery is in place, we include a version of Theorem 3.1 for 3-manifolds with the same Z-homology as S 1 S 2. Lemma 4.1. Let M 3 be a homology S 1 S 2, T M 3 a solid torus whose core generates H 1 (M 3 ), λ a longitude of T, and X = M 3 int(t ). Then: (a) H k (X) = Z for k = 0, 1 and H k (X) = 0 otherwise, (b) [λ] generates H 1 (X), and (c) there is a surface F, properly embedded in X, such that F is a meridian of T. P r o o f. Verification of (a) is similar to that of Lemma 2.1(a). To see that [λ] generates H 1 (X) consider the inclusion induced homomorphism H 1 (X) H 1 (M 3 ). Since [λ] generates H 1 (M 3 ) this map is surjective, hence it is an isomorphism. Therefore, [λ] generates H 1 (X). Existence of an embedded surface F is verified as in Lemma 2.1(c). Since F is trivial in H 1 (X), part (b) implies that F can only be a meridian.

292 C. R. Guilbault Theorem 4.2. Every homology S 1 S 2 may be obtained by a single (0/1)-Dehn surgery on some homology sphere Σ 3. P r o o f. Let M 3 be a homology S 1 S 2 and T M 3 a solid torus whose core generates H 1 (M 3 ). Using the result and notation of Lemma 4.1, attach a solid torus T to X with a meridian being identified to λ. The result is a homology sphere, Σ 3. Since the preferred longitude of T in Σ 3 is a meridian of T, reversing this surgery amounts to a (0/1)-Dehn surgery on Σ 3. References [Co] M. M. Cohen, A Course in Simple Homotopy Theory, Springer, Berlin, 1973. [Fu] S. Fukuhara, On an invariant of homology lens spaces, J. Math. Soc. Japan 36 (1984), 259 277. [L-S] E. Luft and D. Sjerve, Degree-1 maps into lens spaces and free cyclic actions on homology spheres, Topology Appl. 37 (1990), 131 136. [Ol] P. O l u m, Mappings of manifolds and the notion of degree, Ann. of Math. 58 (1953), 458 480. [Wa] F. W a l d h a u s e n, On mappings of handlebodies and of Heegard splittings, in: Topology of Manifolds, Markham, Chicago, 1970, 205 211. DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF WISCONSIN-MILWAUKEE MILWAUKEE, WISCONSIN 53201 U.S.A. E-mail: CRAIGG@CSD4.CSD.UWM.EDU Received 24 August 1993