Quantum coherence in semiconductor nanostructures. Jacqueline Bloch

Similar documents
Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Polariton laser in micropillar cavities

Hydrodynamic solitons in polariton superfluids

Vortices and superfluidity

Polariton Condensation

Dynamical Condensation of ExcitonPolaritons

Quantum Optics in Wavelength Scale Structures

Supplementary material

Electrically Driven Polariton Devices

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Quantised Vortices in an Exciton- Polariton Condensate

Supporting Online Material for

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Room Temperature Polariton Lasing in All-Inorganic. Perovskite Nanoplatelets

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

SUPPLEMENTARY INFORMATION

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Microcavity Exciton-Polariton

The Solid-State Quantum Network (SSQN)

Driven-dissipative polariton quantum fluids in and out of equilibrium

Exciton photon strong-coupling regime for a single quantum dot in a microcavity.

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Optically-controlled controlled quantum dot spins for quantum computers

Single Photon Generation & Application

Entangled Photon Generation via Biexciton in a Thin Film

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Hong-Ou-Mandel effect with matter waves

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optical Nonlinearities in Quantum Wells

From laser cooling to BEC First experiments of superfluid hydrodynamics

Theory of quantum dot cavity-qed

Cavity QED with quantum dots in microcavities

Fermi polaron-polaritons in MoSe 2

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

Single-mode Polariton Laser in a Designable Microcavity

Quantum Optics. Manipulation of «simple» quantum systems

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III)

Fabrication / Synthesis Techniques

Differential Phase Shift Quantum Key Distribution and Beyond

Manipulating Polariton Condensates on a Chip

Photonic devices for quantum information processing:

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Self-Assembled InAs Quantum Dots

Quantum optics of many-body systems

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Design and realization of exotic quantum phases in atomic gases

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Light-Matter Correlations in Polariton Condensates

THz experiments at the UCSB FELs and the THz Science and Technology Network.

Single Photon Generation & Application in Quantum Cryptography

QUANTUM- CLASSICAL ANALOGIES

Non-equilibrium quantum many-body physics with optical systems

Quantised Vortices in an Exciton-Polariton Fluid

Bose-Einstein Condensate: A New state of matter

David Snoke Department of Physics and Astronomy, University of Pittsburgh

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Lecture 8, April 12, 2017

SUPPLEMENTARY INFORMATION

Oscillateur paramétrique optique en

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Quantum optics with multi-level transitions in semiconductor quantum dots

Control of excitons and exciton-polariton condensates in acoustic lattices

An entangled LED driven quantum relay over 1km

Quantum Computing with neutral atoms and artificial ions

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

All-optical control of the quantum flow of a polariton superfluid

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

MESOSCOPIC QUANTUM OPTICS

Room temperature one-dimensional polariton condensate in a ZnO microwire

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Ultrafast solid-state quantum optics

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

what happens if we make materials smaller?

GeSi Quantum Dot Superlattices

Lecture 8 Interband Transitions. Excitons

Condensation of Excitons in a Trap

Chapter 5. Semiconductor Laser

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Motion and motional qubit

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

A Guide to Experiments in Quantum Optics

Cooperative Phenomena

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Computation with Neutral Atoms Lectures 14-15

Stimulated scattering and lasing of intersubband cavity polaritons

A Mixture of Bose and Fermi Superfluids. C. Salomon

Transcription:

Quantum coherence in semiconductor nanostructures Jacqueline Bloch Laboratoire of Photonic and Nanostructures LPN/CNRS Marcoussis Jacqueline.bloch@lpn.cnrs.fr

Laboratoire de Photonique et de Nanostructures Marcoussis A CNRS Laboratory30 km southof Paris www.lpn.cnrs.fr 50 permanent researchers Growth facilities Processing facilities Physical studies

What are semiconductor nanostructures? e - L x Confine electrons in a volume with dimensions comparable to the De Broglie wavelength (typically 1 nm) Quantum confinement : quantization of the energy levels k = pπ/l Quantum Wells Growth direction 2D Continuum 2 1 2 Inter-band transition Intra-band transition Emission

What are semiconductor nanostructures? e - L x Confine electrons in a volume with dimensions comparable to the De Broglie wavelength (typically 1 nm) Quantum confinement : quantization of the energy levels k = pπ/l Quantum Dots : 3D confinement TEM G. Patriarche Emission intensity γ 1-10 µev x~ 1340 1345 1350 1355 Energie (mev) Discrete quantum states «artificial atom»in a solid state system

Optics in microcavities Confine light in small volumes (of the order of λ 3 ) Modify the light matter coupling Interferential mirrors Miroir interférentiel GaAs/AlGaAs Miroir interférentiel Interferential mirrors AlAs n=1 micropillars microdisks Photonic crystal microcavities

Quantum coherence in semiconductor nanostructures Control of these quantum emitters, enhance light matter interaction, manipulate single spins - Bose condensates; new optical functionalities - Non-linear optics at the single photon level - Cavity quantum electrodynamics - Quantum information processing - Source of quantum light : quantum cryptography, teleportation

GaAs/AlGaAs based structures Semiconductor cavities: a model system to investigate the physics of Bose condensates θ Angle θ (º) -20-10 0 10 20 5 K Top DBR Quantum Wells Bottom DBR Emission energy (ev) Microcavity polaritons : mixed exciton-photon states ~ 5meV Upper polariton Lower polariton -2 0 2 k in-plane (µm -1 ) Photon Exciton Bosonic quasi-particule (J = +-1) Low effective mass => Large De Broglie wave length => Condensation at high temperature λ T 1 2 2 2πh = mk BT

Bose-Einstein condensation Macroscopic wavefunction λ T 1 2 2 2πh = mk BT BEC with atoms Cornell s and Wieman s groups: condensation of Rb atoms (1995) Low critical temperatures: < 1 µk T http://jilawww.colorado.edu/bec/ Nature 443, 409 (2006) T = 5 K CdTe Polariton density k y k x Kasprzak et al. Nature, 443, 409 (2006)

Typical experimental scheme Far field imaging: k space Near field imaging: real space -0.5 kx 0.0 0.5 Density (µm-1) Far field (d) Energy Flow ky (µm-1) 1 0 30 µm Interference with Coherence map a reference beam g(1) Phase dislocations - vortices - solitons kx (µm-1) Resonant injection of polaritons

THEORY GROUP at Laboratoire MPQ, Université Paris Diderot Responsable: Prof. Cristiano CIUTI Web page: http://www.mpq.univ-paris7.fr/ Google search: Laboratoire MPQ THEORIE Main theoretical activity(semiconductors): - Polariton quantum fluids(photons) - Ultra-strongcouplingin cavityquantum electrodynamics cavité (circuit) Recent review: I. Carusotto& C. Ciuti, Reviews of Modern Physics in press; http://arxiv.org/abs/1205.6500

Alberto Bramati Cavitypolaritons: coherence and spin dynamics Quantum fluid: superfluidity, solitons,.. Spin switch, spin Hall effect Nature Physics 2009 Vortex lattices Nature Physics 2009 Science 2011 Science 2012

Jacqueline Bloch Alberto Amo Manipulating Bose condensate in photonic circuits 26 pairs Laboratoire of Photonique and Nanostructures http://www.lpn.cnrs.fr/fr/goss/cfmc.php GaAs/GaAlAs microcavities λ/2 cavity 30 pairs Substrate 3x4 GaAs quantum wells Macroscopic propagation and coherence Trapping Ferrier et al. PRL 106, 126401 (2011) Galbiati et al. PRL 108, 126403 (2012) Wertzet al., Nature Physics6, 860 (2010) Taneseet al. PRL 108, 36405 (2012) Wertzet al., PRL to appear

Manipulating Bose condensate in photonic circuits Laboratoire of Photonique and Nanostructures What is next? Polariton interferometer http://www.lpn.cnrs.fr/fr/goss/cfmc.php Condensation in a periodic potential: Bloch oscillations: H. Flayacet al., Phys. Rev. B 84, 125314 (2011) Phys. Rev. B 83, 045412 (2011) Propagation, interaction of gap solitons I. Shelykhet al., PRL 102, 046407 (2009) Arrays of coupled condensates Bose Hubbard quantum phases Carusotto et al., PRL 103 033601 (2009) Fisher et al., PRB 40, 546-570 (1989)

MPQ Université Paris Diderot Quantum Physics and Devices (QUAD) A. Vasanelli, M. Amanti, S. Barbieri, Y. Todorov, C. Sirtori Building blocks: We develop novel concepts of quantum engineering inmaterialsthatarecurrentlyatthebasisofict. Electron confinement: SemiconductorQWs, band structure engineering Fields of action Photon confinement: plasmonicmicrocavities, highly subwavelength confinement THz quantum cascade laser Electroluminescence from intersubband polaritons S. Barbieriet al. Nature Phot. 2011 S. Barbieriet al. Nature Phot. 2010 L. Sapienzaet al., PRL 2008 Y. Todorovet al., PRL 2009 Y. Todorovet al., PRL. 2010 Integrated quantum cascade laser modulator J. Teissieret al. Opex2012

LPQM ENS Cachan Group: Optical propertiesof hybridnanostructures Self-organizedhybridquantum wells: Perovskites (R-NH 3 ) 2 MX 4 a) Photoluminescence Emmanuelle Deleporte (Pr) Jean-Sébastien Lauret(MdC) Strong coupling regime at room temperature 50 45 40 35 30 25 20 15 10 5 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Densité optique Tunability PhE-PbI 4 m = 3 m = 2 PhE-PbBr 4 2,40 ev 3,07 ev m = 3 m = 1 m = 2 PhE-PbCl 4 3,65 ev m = 1 Energie (ev) 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 Energie (ev) Objectives : Study of this new material(electronic properties) Polariton condensation Electrical injection M: Pb;X: I, Br, Cl R: Phényl, Cyclohexane. Publications: Superlattices and Microstructures 47, 10 (2010) Appl. Phys. Lett. 93, 081101 (2008); New Journal of Physics10, 065007 (2008) New Journal of Physics10, 065017 (2008) Appl. Phys. Lett. 90, 091107 (2007) Phys. Rev. B74, 235212 (2006) Appl. Phys. Lett. 89, 171110 (2006)

Quantum physicswithsingle quantum dots - Single spin in a quantum dot : a quantum bit - Source of quantum light - Cavity quantum electrodynamics using single quantum dot in a cavity

A spin in a Quantum dots : a quantum bit? TEM G. Patriarche electron A single spin : a well «isolated»quantum bit? Spin optical pumping : Science 312, 551 (2006), Phys. Rev. Lett. 99, 097401 (2007);Nature 451 441 (2008) Quantum non demolition spin measurement: Science 314. 1916 (2006), Nature Physics 3, 101 (2007) Spin coherence: interaction with nuclei Phys. Rev. Lett. 94, 116601 (2005), Phys. Rev. Lett. 102, 146601 (2009) Nature Physics, 5(8) 2009, Arxiv arxiv:1202.4637,

Quantum dots : a solids tate source of quantum light TEM G. Patriarche Luminescence intensity (a. u.) X T=4 K XX 1345 1350 1355 Energy (mev) Single photon emission Science 290, 2282 (2000)

Semiconductor quantum dots for the generation of non classical states of light Purpose: Efficient indistinguishable single photon source Entanglement of qubits Applications in quantum information ValiaVoliotis, Richard Hostein http://www.insp.jussieu.fr/ Resonant Rabi oscillations: qubit initialization Luminescence (arb. units) 0 π 2π 3π 4π 5π 6000 4000 2000 0 0 12 24 36 48 60 P 1/2 (µw 1/2 ) Coherent control of the qubit: θ ψ = cos 0 θ + sin 1 2 2 θ: Rabi frequency Pulse area P Indistinguishable single photon sources? increase of T2/T1 HBT on-resonance δ, φ 300 < T 2 < 600 ps (< 2 T 1 ) 600 < T 1 < 900 ps 1 0 µpl Intensity (arb. units) θ =π/2 «off» «on» φ = 0 φ = π 903 904 905 906 907 Wavelength (nm) Coincidences 30 20 10 0-24,4-12,2 0,0 12,2 24,4 36,6 Retard (ns) (Collaboration: LPA, LPN) HBT on resonance g (2) (0) = 0.06

Quantum optics in single quantum dots Optically-gated resonant emission in single quantum dots H. S. Nguyen et al., Phys. Rev. Lett. 108, 057401 (2012) Optically-gated resonant emission Optical gate Resonant laser Intensity (10 3 counts/s) 70 60 50 40 30 20 10 0 Gate ON Gate OFF -10-5 0 5 10 δ (µev) g (2) (τ) Carole Diederichs Laboratoire Pierre Aigrain 1.2 1.0 0.8 0.6 0.4 0.2 0.0-6 -4-2 0 2 4 6 τ (ns) τ (ns) τ (ns) τ (ns) 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 Ultra-coherent single photon source H. S. Nguyen et al., App. Phys. Lett. 99,261904 (2011) Norm. intensity g (1) (τ) 0.4 0.3 0.2 0.1 0.0 1.5 1.0 0.5 0.0-10 0 10 E - E L (µev) -10 0 10-10 0 10 E - E L (µev) E - E L (µev)

A quantum dot in a cavity : A solid state system for quantum information processing Contact : Pascale Senellart and Loic Lanco Laboratoire de Photonique et de Nanostructures Marcoussis, France http://www.lpn.cnrs.fr/fr/goss/bqm.php QD g e- cavity mode τ c Optical loss Artificial atom Single photons source Single spin memory Microcavities Controlling spontaneous emission Mixed light-matter states

Full control of a single dot spontaneous emission In-situ lithography PL intensity (a.u.) 10000 1000 100 OFF resonance(50k) τ XX τ XX = 1.15 ns ONresonance(5 K) τ XX τ XX = 130 ps 0.0 0.2 0.4 0.6 0.8 1.0 1.2 time (ns) On demand Purcell effect Light matter entangled states Dousse et al, PRL 2008 Dousse et al, APL 2009 See Dousse et al, Phys. Rev. Lett 2008, APL 2009 Suffczynskii et al, PRL 2009

Ultrabright sources for quantum information processing Few photon optical non-linearity Single photons, Indistinguishable photons Entangled photon pairs 0.90 Dousseet al, Nature 2010, Gazzanoet al, 2012 Pulsed excitation Reflectivity 0.88 0.86 0.84 0.82 0.80 8 photons 0.78 10-1 10 0 10 1 10 2 10 3 Incident photons per pulse 10 4 Loo et al, PRL 2012

Toward a solid state quantum network? Teleportation, Spin photon entanglement, entanglement distillation, remote spin entanglement, delayed photon entangler Single photon optical switch Spin based quantum memory Delayed photon entangler V Entangled photon pair source Single photon source

Optional course: second semestre Laboratoire Photonique et Nanostructures LPN/CNRS Marcoussis (http://www.lpn.cnrs.fr) Laboratoire Matériaux et Phénomènes Quantiques MPQ/ Université Paris 7 http://www.mpq.univ-paris7.fr/ Pascale Senellart Jacqueline Bloch Cristiano Ciuti Carlo Sirtori