Fundamentals of Ultraviolet Treatment Terms and Definitions do Matter!

Similar documents
Germicidal Power. Biofouling Control Using UVC LEDs

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept.

Chem 321 Lecture 18 - Spectrophotometry 10/31/13

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Photochemical principles

1. The most important aspects of the quantum theory.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1]

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Introduction to Electromagnetic Radiation and Radiative Transfer

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

IMPACT OF PARTICLE AGGREGATED MICROBES AND PARTICLE SCATTERING ON UV DISINFECTION

This watermark does not appear in the registered version - Laser- Tissue Interaction

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

Reflection = EM strikes a boundary between two media differing in η and bounces back

CHEM 115 Waves, Radiation, and Spectroscopy

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Chapter 1: Introduction

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

CHEM 103: Chemistry in Context

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

ATMO/OPTI 656b Spring 2009

Chapter 5 Electrons In Atoms

Quantum Theory of the Atom

Spectroscopy Meditsiiniline keemia/medical chemistry LOKT Spectroscopy

Thermal Radiation By: Prof. K M Joshi

Wave - Particle Duality of Light

Astronomy The Nature of Light

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light)

Light Matter Interactions: Theory and Applications (LMITA) What is Light?

Electromagnetic Radiation. Physical Principles of Remote Sensing

CH-442. Photochemistry I. Prof. Jacques-E. Moser.

24 Introduction to Spectrochemical Methods

EBS 566/666 Lecture 8: (i) Energy flow, (ii) food webs

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Stellar Astrophysics: The Continuous Spectrum of Light

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz

Development of an excimer UV light source system for water treatment

Lecture 3: Atmospheric Radiative Transfer and Climate

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry

LIGHT WAVES AND PARTICLES

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons???

Lecture Notes Prepared by Mike Foster Spring 2007

Radiometry and Photometry

Radiation in the atmosphere

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Question 11.1: Find the

EXPERIMENT 17: Atomic Emission

Physics 1C. Lecture 27A

Astronomy 1 Winter 2011

Spectrophotometry. Introduction

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

The Quantum Mechanical Atom

Chapter 5 Electrons In Atoms

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

The relationship between these aspects is described by the following equation: E = hν =

Name: COMBINED SCIENCE Topics 4, 5 & 6 LEARNING OUTCOMES. Maintain a record of your progress Use the booklet to guide revision

CHEM 200/202. Professor Jing Gu Office: GMCS-213F. All s are to be sent to:

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

minimum wavelength of X-rays produced by 30 kv electrons.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Atomic Structure 11/21/2011

MOLEBIO LAB #4: Using a Spectrophotometer

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy

Chemistry is in the electrons

A very brief history of the study of light

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

OPAC 101 Introduction to Optics

Light is an electromagnetic wave (EM)

Classical and Planck picture. Planck s constant. Question. Quantum explanation for the Wein Effect.

Identification Sticker

Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown

Chem 115 POGIL Worksheet - Week 8 - Answers Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra. ΔH o = 285.

Chapter 6 Electronic Structure of Atoms

Hint: unit of energy transferred is equal to: hν = hc

Infrared Temperature Calibration 101 Using the right tool means better work and more productivity

SECTION A Quantum Physics and Atom Models

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM

Homework 04 - Electromagnetic Radiation

Atomic Theory: Spectroscopy and Flame Tests

high energy state for the electron in the atom low energy state for the electron in the atom

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

The Nature of Light. Chapter Five

RADIATION and the EM Spectrum

progressive electromagnetic wave

Transcription:

Fundamentals of Ultraviolet Treatment Terms and Definitions do Matter! James R. Bolton Bolton Photosciences Inc., 628 Cheriton Cres., NW, Edmonton, AB, Canada T6R 2M5; jbolton@boltonuv.com ABSTRACT The fundamentals of UV light from the nature of light, light sources to targets, light absorption and transmission and UV reactor design are presented along with recommended terms and definitions. INTRODUCTION The fundamentals of ultraviolet (UV) light and its absorption are the same for any medium (air, water or surface) In this paper, I will assume that the reader has limited knowledge of UV; thus terms and definitions will be carefully defined. 1 It is important to understand these fundamental terms to prevent errors, misinterpretations and misunderstandings. LIGHT PARTICLES OR A WAVES? Light or electromagnetic radiation encompasses wavelengths that span at least 15 orders of magnitude from gamma rays to radio waves. In the 19th century, light was considered to have only wave-like properties; however, in the late 19th and early 20th century it became clear from the work of Planck, Einstein and others that light also has particle-like properties. This characteristic is most apparent in the photoelectric effect, where Einstein was able to explain the results in terms of the concept of light as a stream of particles called photons. Earlier Planck was able to explain the properties of blackbody radiation by assuming that light is composed of discrete particles with an energy inversely proportional to the wavelength. These two characteristics of light are linked together in the famous Planck Law of Radiation as shown in the equations below [1a] u = hν = hc/λ [1b] U = N A hν = hcn A /λ where u is the energy (J) of one photon, ν is the frequency (Hz = s 1 ), λ is the wavelength (m), c is the speed of light (2.9979 x 10 8 m s 1 ) in a vacuum, h is the Planck constant (6.6261 x 10 34 J s), N A is the Avogadro number (6.02214 x 10 23 mol 1 ) and U is the energy of one mole or einstein of photons. The units here have been given in the standard SI forms; however, for applications in ultraviolet light and photochemistry, λ is usually given in nanometers (nm), with appropriate numerical factors to make the left-hand side of the equations come out to joules (J). LAWS OF PHOTOCHEMISTRY Photochemical reactions are unique in that they are driven by light absorption. For example, UV disinfection is a process that is initiated by the absorption of UV photons by nucleic acid bases in the DNA of bacteria and protozoa and by either DNA or RNA in viruses. There are at least three Laws of Photochemistry that apply: First Law of Photochemistry Only the light that is absorbed by a molecule can be effective in producing photochemical change in the molecule. If light (i.e., a stream of photons) is not absorbed as it passes through a medium, nothing can happen, and no photochemical reaction can be induced. This Law is sometimes called the Grotthus- Draper Law after the works of Grotthus in 1817 and Draper in 1843. An illustrative example is the hydrogen peroxide (H 2 O 2 ) molecule. Photons with wavelengths out to 560 nm have enough energy to dissociate the O O bond in H 2 O 2 ; however, no photochemical reaction occurs until light below about 300 nm is absorbed. This is because the absorbance of H 2 O 2 becomes vanishingly small above 300 nm. Second Law of Photochemistry Each molecule taking part in a photochemical reaction absorbs one quantum of radiation (photon), which causes the reaction. This is a consequence of the particle nature of light. This is sometimes called the reciprocity rule. It means that the photochemical yield is dependent only on the number of photons absorbed. This is also sometimes called the Stark-Einstein Law after the works of Stark and of Einstein around 1912. Thus the amount of product formed or the reagent consumed will be independent of the fluence rate as long as the fluence (product of the fluence rate and the exposure time) is constant. Note that not all molecules that absorb a photon necessarily proceed to a photochemical reaction. The fraction of stimulated molecules that do react is called the quantum yield. There is an exception to this law at very high light levels (e.g., such as in a powerful laser beam), where multi-photon absorption can take place. SEPTEMBER 2004 27

Third Law of Photochemistry The energy of an absorbed photon must be equal to or greater than the energy of the weakest bond in the molecule. This is a consequence of the Law of Conservation of Energy. A chemical reaction generally requires one or more bond ruptures, so if the energy of the absorbed photon is less than the energy of the weakest bond, no photochemical reaction is possible. An example is NO 2, a brown gas found in photochemical smog. NO 2 absorbs light out to about 550 nm; however, only light absorbed below 395 nm has enough energy to dissociate the N O bond. Thus light absorbed above 395 nm can only be converted to heat. SPECTRAL WAVELENGTH RANGES OF INTEREST Figure 1 shows that the range of ultraviolet is from 100 400 nm [a nanometer (nm) is 10 9 meters (m)]. Ultraviolet means beyond the violet limit (400 nm) of the visible range that extends out to 700 nm. The ultraviolet range is divided up into four sub-bands: UVA This sub-band extends from 315 400 nm. Light in this range is absorbed by the skin and leads largely to sun tanning. UVB This sub-band extends from 280 315 nm. Light in this range is also absorbed by the skin but leads largely to sun burning. UVC This sub-band extends from 200 280 nm. Light in this range is absorbed by DNA in the skin and is the primary cause of skin cancer. This range also is absorbed by DNA and RNA in microorganisms and leads to their inactivation by inhibiting the ability of these organisms to replicate. Vacuum Ultraviolet This sub-band extends from 100 200 nm. It is called the vacuum UV since UV light in this range is strongly absorbed by water or oxygen in the air. For example, a low pressure UV lamp with a very pure quartz sleeve emits at 185 nm. This light is absorbed in a few cm by oxygen in the air and leads to the generation of ozone (O 3 ). Figure 1. Spectral band of light. The scale on the bottom is wavelength λ in nm, and the scale on the top is photon energy U in kj mol 1. SOME TERMS AND DEFINITIONS The Photochemistry Commission of the International Union of Pure and Applied Chemistry (IUPAC) has developed a recommended set of terms and definitions for ultraviolet disinfection and photochemical applications (Bolton, 2000). This paper divides the relevant definitions into those related to the light source and those related to a target being illuminated. Source Definitions Radiant Power (P Φ ) [W] is the total radiant power emitted in all directions from a light source. Radiant Energy (Q) [J] is the total radiant energy emitted in all directions from a light source. It is the integral of the radiant power over time. Radiant Emittance (M) [W m 2 ] is the radiant power emitted in all forward directions from a tiny area (da) on the surface of the source divided by that area (see Fig. 2a). The Radiant Emittance is a measure of the brightness of a source. Radiant Intensity (I) [W sr 1 ] is the power emitted outward from a source along a given direction about a tiny cone of solid angle dω steradians (see Fig. 2b). The radiant intensity, in a nonabsorbing medium, is independent of the distance from the source. Figure 2. (a) Radiant Emiitance, where the beams emerge from a tiny element of surface da; (b) Radiant Intensity, where the beams emerge through a tiny cone of of solid angle dω. Target Definitions Irradiance (E) [W m 2 ] is the total radiant power of all infinitesimally small area da, divided by da. Often the units mw cm 2 (= 10 W m 2 ) are used. Irradiance is measured by a radiometer, and the term is appropriate for any situation where a surface is being irradiated (e.g., in UV curing). Fluence Rate (E ) [W m 2 ] is the total radiant power of all infinitesimally small sphere of cross-sectional area da, divided by da. Often the units mw cm 2 (= 10 W m 2 ) are used. This is the appropriate term for UV disinfection because a microorganism in air or water can receive UV photons from many different directions, particularly in situations where there are several UV lamps. The fluence rate is the sum of the irradiance contributions from each of the UV lamps. Fluence rate and irradiance (see Figure 2) are often confused and misused. Often the term UV intensity is used [as does the recently released US EPA UV Disinfection Guidance Manual (USEPA, 2003)]. However, the term UV intensity does not distinguish between fluence rate and irradiance ; hence, its use is not encouraged, unless one wishes to express a qualitative assessment. For example, one can say that the UV intensity from a medium pressure UV lamp is much greater than that from a low pressure UV lamp at the same distance. 28 IUVA NEWS, Vol. 6, No. 3

Figure 3. (a) Irradiance, where the beams impinge on a tiny element of surface da; (b) Fluence rate, where the beams pass through a tiny sphere of cross-sectional area da. Radiant Exposure (H) [J m 2 ] is the total radiant energy of all infinitesimally small area da, divided by da. Often the units mj cm 2 (= 10 J m 2 ) are used. This term is appropriate for any situation where a surface is being irradiated (e.g., in UV curing). Fluence (H ) [J m 2 ] is the total radiant energy of all infinitesimally small sphere of cross-sectional area da, divided by da. Often the units mj cm 2 (= 10 J m 2 ) are used. The fluence is the time integral of the fluence rate. If the fluence rate is constant in time, the fluence (J m 2 ) is the product of the fluence rate (W m 2 ) and the exposure time (s). In much of the current literature, the term UV dose is used for fluence. UV dose is not an appropriate term because the word dose implies complete absorption, as in UV exposure of skin. However, a typical microorganism absorbs less than 1% of the incident UV photons, since it is so small. Nevertheless, the term UV dose is widely used, particularly in North America. Perhaps the reason is that engineers find the term UV dose more intuitive than fluence. ABSORPTION AND TRANSMISSION When light passes through an absorbing medium, it is apportioned into three parts: the fraction absorbed, the fraction transmitted and the fraction scattered. In most cases (where the turbidity is low), scattering can be neglected, as we will do here. Beer-Lambert Law, Transmittance, Absorption Coefficient and Absorbance Consider Figure 4, where a light beam of wavelength λ enters with an irradiance E o into an absorbing medium with a path length l cm and emerges with an irradiance E l. These two irradiances are connected by the Beer-Lambert Law: [2a] E T = l Eº = 10 A = 10 al or [2b] log(t) = log E l Eº = A = al where T is the transmittance, a [cm 1 ] is the (decadic) absorption coefficient, A is the absorbance (unitless) and l is the path length [cm]. These can also be based on a meter (as they are in most parts of the World except North America). Hence, the absorption coefficient is then expressed in units of m 1. Note that 1 cm 1 = 100 m 1. Figure 4. Transmission of a light beam of wavelength λ with an incident irradiance E o through a medium of path length λ and emerging with an irradiance E l. Note that equations 2 apply only for monochromatic beams with a narrow distribution about a central wavelength λ. The absorbance is a very important quantity because it is directly proportional to concentrations of absorbing components, that is [3] A = Σε i c i l i where ε i is the molar absorption coefficient (M 1 cm 1 ) of component i and c i is the concentration (M = mol L 1 ) of component i. Often the terms absorbance and absorption coefficient are confused. For example, the USEPA Ultraviolet Disinfection Guidance Manual (USEPA 2003, p. A-8) (UVDGM) defines absorbance at 254 nm as follows: A 254 = UV absorbance at specified wavelength, based on 1 cm path length (unitless; absorption as measured by Standard Method 5910B) This statement is incorrect. Apparently the UVDGM uses this definition because this is how UV absorbance is typically defined in water treatment and because in almost all cases 1 cm cell is used to measure the UV absorbance. However, it is unfortunate that they did not define A 254 correctly as the absorption coefficient with units of cm 1. As defined, A 254 is certainly not unitless. It is important to specify the path length for the transmittance, since without that specification, the transmittance is undefined. Sometimes the path length (in mm) is appended as a subscript, for example, T 10 means the transmittance for a path length of 10 mm (1 cm). FACTORS AFFECTING THE PERFOR- MANCE OF UV REACTORS AUVreactor is a defined space that contains UV lamps. If used for water treatment, the UV reactor can either be an enclosed space or be an open-channel, where the top water surface is open to the air. UV reactors for air treatment are almost exclusively enclosed space reactors. The performance of UV reactors can be expressed either as the fluence (UV dose) delivered or as the ratio of the effluent to influent concentration of a contaminant. The performance depends on several factors: 1. The absorption coefficient or transmittance of the medium (e.g., air or water) this is probably the most important factor. Generally, as the absorption coefficient (cm 1 or m 1 ) increases (transmittance decreases) the fluence (UV dose) that a reactor can deliver at a fixed flow rate decreases. Figure 5 (taken from Bolton et al. 2001) illustrates how the SEPTEMBER 2004 29

performance deteriorates as the %T 10 drops for an annular UV reactor. This curve should apply equally well to more complex reactors. Figure 5. Fluence (UV dose) in a UV reactor as a function of the percent transmittance of the water. The dotted line corresponds to a common minimum fluence standard for disinfection safety The %T of the medium also is important in UV reactor design. Figure 6 (taken from Bolton et al. 2001) illustrates how quickly the UV fluence rate (irradiance) falls off with distance as a function of the %T 10 of the medium. For drinking water rectors, where the %T 10 is often >90%, the penetration depth is quite large (8 12 cm), so reactors should be designed so that lamps are relatively far apart and the walls are not too close to the outer lamps. By contrast, wastewater has %T 10 values that are 40 60% or less. Here penetration depths are only 1 2 cm. Thus reactors should be designed with lamps relatively close to each other and the walls close to the outer lamps. Figure 6. UV penetration depth (out from the quartz sleeve) versus percent transmittance (%T 10 ). The red (solid) curve is for the penetration depth at which the fluence rate has dropped by 99% of its value at the quartz sleeve. The blue (dashed) curve is the corresponding one for a 95% drop. 2. Number and power of the UV lamps generally, the fluence (UV dose) delivered increases linearly with the power applied to the UV lamps, although this is not true when, for example, a low pressure lamp is replaced by a medium pressure lamp because the UVC efficiency of the latter is less than half that of the former. 3. Flow Rate generally, the fluence (UV dose) decreases as the flow rate increases because the residence time in the reactor is inversely proportional to the flow rate. However, the dependence is often non-linear because at high flow rates, the mixing efficiency improves. 4. Mixing efficiency this is defined as the ratio of the actual fluence (UV dose) delivered at a given flow rate to the maximum theoretical fluence (UV dose) assuming perfect radial mixing as the air or water passes through the reactor. The latter can be determined by calculating the volume average fluence rate (using a suitable mathematical model) and multiplying by the residence time in seconds. 5. Reflection UV light (200 300 nm) reflected from the reactor walls back into the reactor can significantly improve performance, since not all this UV light is lost at the walls. Aluminum has the best reflection coefficient (>95%) whereas it is only about 25% for stainless steel and virtually zero for wood. CONCLUSIONS This paper has attempted to lay out the fundamentals of ultraviolet light in its application to UV reactors for air and water treatment. It is important to use properly-defined terms and units, so that readers can have a clear view of the concepts being put forward. A good source of UV references is the reference list maintained in IUVA e-news, the online Newsletter of the International Ultraviolet Association (IUVA) (go to http://www.iuva.org for details). NOTES 1. For further background on the fundamentals of ultraviolet applications see Bolton (2001). Also the recently released USEPA Ultraviolet Disinfection Guidance Manual has an excellent discussion of the Fundamentals of UV Disinfection (USEPA 2003, Appendix A). Calvert and Pitts (1966) and Wayne (1988) are good books on photochemistry. 2. The first two Laws of Photochemistry are very well laid out by Calvert and Pitts (1966, p.20); the Third Law is my own concept. 3. There is also a (naperian) absorption coefficient (symbol α) that is used when e replaces the 10 in equation 2a. REFERENCES Bolton, J.R. 2000. Terms and Definitions in Ultraviolet Disinfection, in Proceedings, Disinfection 2000: Disinfection of Wastes in the New Millennium, 15-18 March 2000, New Orleans, LA, Water Environment Federation, 601 Wythe St., Alexandria, VA, 22314 1994. Bolton, J.R. 2001. Ultraviolet Applications Handbook, 2nd Ed., Bolton Photosciences Inc., 628 Cheriton Cres., NW, Edmonton, AB, Canada T6R 2M5. Bolton, J.R., Stefan, M.I., Cushing, R.S. and Mackey, E. 2001. The Importance of Water Absorbance/Transmittance on the Efficiency of Ultraviolet Disinfection Reactors, Proc. First International Congress on Ultraviolet Technologies, June 2001, Washington, DC. CD/ROM published by the International Ultraviolet Association, P.O. Box 1110, Ayr, ON, Canada N0B 1E0. 30 IUVA NEWS, Vol. 6, No. 3

Calvert, J.G. and Pitts, J.N. 1966. Photochemistry, Wiley, New York. USEPA 2003. Draft Ultraviolet Disinfection Guidance Manual, USEPA Report No. 815-D-03-007 http://www.epa.gov/safewater/lt2/pdfs/guide_lt2_uvguidance_dr aft.pdf. Wayne, R.P. 1988. Principles and Applications of Photochemistry, Oxford University Press, Oxford, UK. SEVERN TRENT ULTRAVIOLET DISINFECTION SERVICES UltraDynamics Severn Trent Services offers the UltraDynamics low pressure standard and high output UV disinfection systems ranging in capacity from 2 to 3,000 GPM. Systems are suitable for a range of applications. Potable Industrial High purity TOC reduction For more information call 215.997.4000 today. www.severntrentservices.com UV SOLUTIONS START HERE. Gewerbegebiet Ost 1 D-98704 Wümbach Tel.:+49(0)36785-520-0 / Fax: - 21 e-mail: info@uvtechnik.com www.uvtechnik.com SEPTEMBER 2004 31