IEK 212 PROCESS HEAT TRANSFER [PEMINDAHAN HABA PROSES]

Similar documents
IEK PROCESS HEAT TRANSFER [PEMINDAHAN HABA PROSES]

IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES]

IEK 108 PROCESS FLUID MECHANICS [MEKANIK BENDALIR PROSES]

EAH 221/3 Fluid Mechanics For Civil Engineers [Mekanik Bendalir Untuk Jurutera Awam]

MAT 111 Linear Algebra [Aljabar Linear]

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

MSG 389 Engineering Computation II [Pengiraan Kejuruteraan II]

MAT Calculus [Kalkulus]

MSG 389 Engineering Computation II [Pengiraan Kejuruteraan II]

MAT 111 Linear Algebra [Aljabar Linear]

IEK 213 MASS TRANSFER AND SEPARATION PROCESSES [PROSES PEMINDAHAN JISIM DAN PROSES PEMISAHAN]

EMH 211 Thermodynamics [Termodinamik]

MAA 101 Calculus for Science Students I [Kalkulus untuk Pelajar Sains I]

MAT 223 DIFFERENTIAL EQUATIONS I [Persamaan Pembezaan I]

EMH 441 Heat Transfer [Pemindahan Haba]

MAT 101 Calculus [ Kalkulus]

MAA Calculus for Science Students I [Kalkulus untuk Pelajar Sains I]

MSG 389 Engineering Computation II [Pengiraan Kejuruteraan II]

(Kertas ini mengandungi 6 soalan dalam 5 halaman yang dicetak) (This question paper consists of 6 questions on 5 printed pages)

MAT 202 Introduction to Analysis [ Pengantar Analisis]

EEM 423 KEJURUTERAAN KEBOLEHPERCAYAAN

MSS 317 Coding Theory [Teori Pengekodan]

IWK 302 WOOD ENGINEERING [KEJURUTERAAN KAYU]

MAT 518 Numerical Methods for Differential Equations [Kaedah Berangka untuk Persamaan Pembezaan]

EMH 451 Numerical Methods For Engineers [Kaedah Berangka Untuk Jurutera]

EMH 211 Thermodynamics [Termodinamik]

EME 411 Numerical Methods For Engineers [Kaedah Berangka Untuk Jurutera]

ESA 382/3 Spacecraft Subsystem Design Rekabentuk Subsistem Kapal Angkasa

MAT111 Linear Algebra [Aljabar Linear]

MAT 222 Differential Equations II [Persamaan Pembezaan II]

MAT 101 Calculus [ Kalkulus] Duration : 3 hours [Masa : 3 jam]

MAT Linear Algebra [Aljabar Linear]

EEE 208 TEORI LITAR II

EMH 441 Heat Transfer [Pemindahan Haba]

DCC5143: FLUID MECHANICS

MST 565 Linear Model [Model Linear]

MSG 356 Mathematical Programming [Pengaturcaraan Matematik]

UNIVERSITI SAINS MALAYSIA

MAA 111 Algebra for Science Students [Aljabar untuk Pelajar Sains]

-1- UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2009/2010. April/May 2010

IWK 302 Wood Engineering [Kejuruteraan Kayu]

EPP 322 Advanced Manufacturing Process [Proses Pembuatan Termaju]

MGM 531 Euclidean Geometry [Geometri Euklidan]

MAT 263 Probability Theory [Teori Kebarangkalian]

ESA 368/3 High Speed Aerodynamics Aerodinamik Berkelajuan Tinggi

MAT 100 Foundation Mathematics [Asas Matematik]

IWK 302 WOOD ENGINEERING [KEJURUTERAAN KAYU]

JJ309 : FLUID MECHANICS

MSG Engineering Computation II [Pengiraan Kejuruteraan II]

IUK 107 CHEMISTRY FOR TECHNOLOGIST [KIMIA UNTUK TEKNOLOGIS]

EMM 213 Strength of Materials [Kekuatan Bahan]

IMK 308 Food Preservation Principles [Prinsip Pengawetan Makanan]

EKC 511 Advanced Separation Process

REG 363 Site Investigation (Kajian Tapak)

EAS151 Statics and Dynamics [Statik dan Dinamik]

...2/- IEK Penghitungan Proses Kimia UNIVERSITI SAINS MALAYSIA. Mac Peperiksaan Semester Kedua Sidang Akademik 2004/2005.

ESA 367/2 Flight Stability & Control I Kestabilan & Kawalan Penerbangan I

CPT115 Mathematical Methods for Computer Sciences [Kaedah Matematik bagi Sains Komputer]

Fakulti Kejuruteraan Petroleum dan Kejuruteraan Tenaga Diperbaharui

EME 451/3 Computational Fluid Dynamics Pengkomputeran Dinamik Bendalir

UNIVERSITI SAINS MALAYSIA. CCS511 Evolutionary Computing [Perkomputeran Berevolusi]

ESA 380/3 Orbital Mechanics Mekanik Orbit

IUK 191E - Mathematic I [Matematik I]

EEU 104 TEKNOLOGI ELEKTRIK

UNIVERSITI SAINS MALAYSIA. CPT115 Mathematical Methods for Computer Science [Kaedah Matematik bagi Sains Komputer]

UNIVERSITI SAINS MALAYSIA EEE 354 SISTEM KAWALAN DIGIT

UNIVERSITI SAINS MALAYSIA. CIT562 Bioinformatics Computing [Perkomputeran Bioinformatik]

MST 562 Stochastic Processes [Proses Stokastik]

EKC 222 Chemical Engineering Thermodynamics [Termodinamik Kejuruteraan Kimia]

IEK 304E - Noise and Sound Control Technology [Peralatan Pengolahan Hingar din Bunyi]

EAV 583/4 Air and Noise Pollution Control EAV 583/4 Kawalan Pencemaran Udara dan Hinggar

UNIVERSITI SAINS MALAYSIA

EKC 214 Energy Balance [Imbangan Tenaga]

MAT Calculus [Kalkulus]

UNIVERSITI SAINS MALAYSIA. CCS511 Evolutionary Computing [Perkomputeran Berevolusi]

EKC 212 Fluids Flow For Chemical Engineering [Aliran Bendalir Kejuruteraan Kimia]

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March 2005 MGM ANALYSIS [ANA LISIS]

KFT 232 Physical Chemistry II [Kimia Fizik II]

ESA 380/3 Orbital Mechanics [Mekanik Orbit]

MST 565 Linear Models [Model Linear]

EEE REKABENTUK SISTEM KAWALAN

MGM 502 Number Theory [Teori Nombor]

UNIVERSITI SAINS MALAYSIA EEM 352 REKABENTUK MEKATRONIK II

BST 203/3 Population and Community Ecology [Ekologi Populasi dan Komuniti]

EAS152 Strength of Materials

UNIVERSITI SAINS MALAYSIA

UNIVERSITI SAINS MALAYSIA EEE 354 SISTEM KAWALAN DIGIT

EMH 441/3 Heat Transfer Pemindahan Haba

MAT Calculus [Kalkulus]

MSG 327 Mathematical Modelling [Matematik Pemodelan]

NUMERICAL INVESTIGATION OF TURBULENT NANOFLUID FLOW EFFECT ON ENHANCING HEAT TRANSFER IN STRAIGHT CHANNELS DHAFIR GIYATH JEHAD

KFT 131 Physical Chemistry I [Kimia Fizik I]

ZCT 104E/3 - Fizik IV (Fizik Moden)

DCC6213: HYDRAULICS & HYDROLOGY

ESA 343/2 Aircraft Aerodynamics [Aerodinamik Pesawat]

UNIVERSITI SAINS MALAYSIA. Supplementary Semester Examination Academic Session 2004/2005. May IUK 291E - Mathematic I1 [Matematik II]

UNIVERSITI SAINS MALAYSIA

EMM 101/3 Engineering Mechanics [Mekanik Kejuruteraan]

UNIVERSITI SAINS MALAYSIA. CCS513 Computer Vision and Image Analysis [Penglihatan Komputer dan Analisis Imej]

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +

Transcription:

UNIVERSITI SAINS MALAYSIA Supplementary Semester Examination Academic Session 2009/2010 June 2010 IEK 212 PROCESS HEAT TRANSFER [PEMINDAHAN HABA PROSES] Duration: 3 hours [Masa: 3 jam] Please check that the examination paper consists of ELEVEN pages of printed material before you begin this examination. Answer FIVE questions. All questions can be answered in Bahasa Malaysia OR English. In the event of any discrepancies, the English version shall be used. [Sila pastikan bahawa kertas peperiksaan ini mengandungi SEBELAS muka surat yang bercetak sebelum anda memulakan peperiksaan ini. Jawab LIMA soalan. Semua soalan boleh dijawab dalam Bahasa Malaysia ATAU Bahasa Inggeris. Sekiranya terdapat sebarang percanggahan pada soalan peperiksaan, versi Bahasa Inggeris hendaklah diguna pakai]. 2/-

- 2 - Answer any FIVE questions. 1. An organic liquid is flowing at 1.15 m/s through a 75-mm-ID steel pipe (k m = 45 W/m. o C). The thickness of the pipe is 5.5 mm. This liquid is being heated by steam condensing outside the pipe. The steam-film coefficient is 15 kw/m 2. o C. The temperature of the liquid at a certain location of the pipe is 50 o C (ρ = 880 kg/m 3, μ = 2.1x10-3 kg/m.s, k = 0.135 W/m. o C, c p = 2170 J/kg. o C). Neglect the viscosity correction. What is the overall heat-transfer coefficient at this point based on the inside area of the pipe? If the steam temperature is 120 o C, what is the heat flux at this point based on the outside area of the pipe? 2. Steam condenses on the outside surface of a pipe, maintaining an inside wall surface temperature of 488.8 K. Air flows inside the pipe, and is heated by means of forced convection. The pipe is 2 m long, with an inside diameter of 2.54 cm. The air velocity is 7.62 m/s, and its pressure is 206.8 kpa. If the mean bulk temperature of the air is 477.6 K, determine the coefficient of heat transfer the rate of heat transfer per unit area. Given: For air at 477.6 K and 206.8 kpa, μ = 2.6 x 10-5 kg/m.s k = 0.03894 W/m.K Pr = 0.686 ρ = 1.509 kg/m 3 At 488.8 K, μ w = 2.64 x 10-5 kg/m.s 3. Water at a rate of 18,000 kg/h at 20 o C flows through a rectangular duct of 7.5 cm x 4 cm and is being heated to 130 o C. The wall of the duct is maintained at 150 o C throughout. The heat capacity and thermal conductivity

of water can be taken as c p = 4.18 J/g. o C and k = 0.673 W/m. o C, respectively. Assuming L/D > 50, determine the heat-transfer coefficient; the required length of the duct. - 3-3/- 4. Water at 15 o C is flowing at 1.1 m/s at right angles across a heated 25-mm-OD tube. The surface temperature of the tube is maintained at 120 o C. What is the heat flux, in kw/m 2, from the surface of the tube to the water? What would be the heat flux if the tube were replaced by a 25-mm-OD sphere, also with a surface temperature of 120 o C? For water at 15 o C, ρ = 999.2 kg/m 3 At a film temperature of T f = (120 + 15)/2 = 67.5 o C, μ f = 4.23 x 10-4 kg/m.s k f = 0.661 W/m. o C c p = 4.187 kj/kg. o C For fluid flow normal to a single tube: (h o D o /k f )(c p μ f /k f ) -0.3 = 0.35 + 0.56(D o G/μ f ) 0.52 For fluid flow past single spheres: h o D p /k f = 2.0 + 0.60(D p G/μ f ) 0.50 (c p μ f /k f ) 1/3 5. An organic solution is to be concentrated from 9 to 45% solids in a single-effect evaporator. Saturated steam is available at 120.5 o C. A pressure of 102 mm Hg is to be maintained in the vapor space, corresponding to a boiling temperature of 51.7 o C. The feed rate to the evaporator is 20,000 kg/h. The overall heat-transfer coefficient can be taken as 2,800 W/m 2. o C. The solution has a negligible boiling-point elevation and a negligible heat of dilution. Calculate the steam consumption, the economy, and the heating surface required if the feed is at 51.7 o C. The heat capacity of the feed solution is 3.77 kj/kg. o C. λ = 2379 kj/kg, λ s = 2200 kj/kg

q = m s λ s = (m f m)λ + m f c pf (T T f ) 4/- - 4-6. An organic liquid flowing at 4,500 kg/h is cooled from 105 to 78 o C in a doublepipe heat exchanger with a total outside area of 6.50 m 2. A cooling liquid flowing at a rate of 4,000 kg/h at 35 o C is available. The exchanger consists of an inner pipe of 3.50 cm ID of 0.36 cm thick and an outer pipe of 5.25 cm ID. If the flow is countercurrent, what are the outlet temperature of the cooling liquid, the LMTD, and the overall heat-transfer coefficient? What are they if flow is parallel? (c) Draw the temperature profiles of both countercurrent and parallel flow. The heat capacity of the organic liquid is 2.280 kj/kg. o C, that of the cooling liquid is 1.841 kj/kg. o C. 1 W = 1 J/s (100 marks)

- 5-5/- Jawab sebarang LIMA soalan.

1. Satu cecair organik mengalir pada 1.15 m/s menerusi satu paip keluli yang berdiameter dalaman 75 mm (km = 45 W/m. o C). Ketebalan paip ialah 5.5 mm. Cecair ini dipanaskan dengan stim yang mengkondensasi di luar paip. Pekali lapisan-stim ialah 15 kw/m 2. o C. Di lokasi tertentu paip suhu cecair ialah 50 o C (ρ = 880 kg/m 3, μ = 2.1x10-3 kg/m.s, k = 0.135 W/m. o C, c p = 2170 J/kg. o C). Abaikan pembetulan kelikatan. Apakah pekali pemindahan haba keseluruhan pada lokasi ini berdasarkan luas dalaman paip? Jika suhu stim ialah 120 o C, apakah fluks haba di lokasi ini berdasarkan luas luaran paip? (100 markah) 2. Stim mengkondensasi di permukaan luar satu paip supaya suhu permukaan dinding dalaman dikekalkan pada 488.8 K. Udara mengalir di dalam paip dan dipanaskan melalui perolakan paksa. Panjang paip ialah 2 m, dan diameter paip 2.54 cm. Halaju udara ialah 7.62 m/s, dan tekanannya ialah 206.8 kpa. Jika suhu udara purata ialah 477.6 K, tentukan pekali pemindahan haba; kadar pemindahan haba seunit luas. Diberi: Untuk udara pada 477.6 K dan 206.8 kpa, μ = 2.6 x 10-5 kg/m.s k = 0.03894 W/m.K Pr = 0.686 ρ = 1.509 kg/m 3 Pada 488.8 K, μ w = 2.64 x 10-5 kg/m.s (100 markah) 3. Air pada kadar 18,000 kg/h pada suhu 20 o C mengalir menerusi satu saluran segiempat tepat 7.5 cm x 4 cm dan dipanaskan hingga 130 o C. Suhu dinding seluruh saluran itu dikekalkan pada 150 o C. Muatan haba dan kekonduktifan terma air ialah masing-masing cp = 4.18 J/g. o C dan k = 0.673 W/m. o C. Anggapkan L/D > 50, tentukan pekali pemindahan haba; panjang saluran yang dikehendaki. (100 markah)

- 6-6/- 4. Air pada 15 o C mengalir pada 1.1 m/s secara tegaklurus menyeberangi satu tiub terpanas yang mempunyai diameter luaran 25 mm. Suhu permukaan tiub dikekalkan pada 120 o C. Apakah fluks haba, dalam unit kw/m 2, dari permukaan tiub ke air? Jika tiub tersebut digantikan dengan satu sfera yang berdiameter luaran 25 mm dan suhu permukaan 120 o C, apakah fluks haba itu akan menjadi? Untuk air pada 15 o C, ρ = 999.2 kg/m 3 Pada suhu filem T f = (120 + 15)/2 = 67.5 o C, μ f = 4.23 x 10-4 kg/m.s k f = 0.661 W/m. o C c p = 4.187 kj/kg. o C Untuk cecair yang mengalir secara tegaklurus dengan tiub tunggal: (h o D o /k f )(c p μ f /k f ) -0.3 = 0.35 + 0.56(D o G/μ f ) 0.52 Untuk aliran bendalir melewati sfera tunggal: h o D p /k f = 2.0 + 0.60(D p G/μ f ) 0.50 (c p μ f /k f ) 1/3 (100 markah) 5. Satu larutan organik akan dipekatkan dari 9 hingga 45% pepejal di dalam satu penyejat kesan-tunggal. Stim tepu yang digunakan ialah pada 120.5 o C. Tekanan 102 mm Hg dikekalkan di dalam ruang wap yang sepadan dengan suhu 51.7 o C. Kadar suap ke dalam penyejat ialah 20,000 kg/h. Pekali pemindahan haba keseluruhan ialah 2,800 W/m 2. o C. Kenaikan takat didih dan haba pencairan boleh diabaikan. Hitungkan keperluan stim, ekonomi, dan luas permukaan pemanasan yang dikehendaki jika suap adalah pada 51.7 o C. Muatan haba untuk larutan suap ialah 3.77 kj/kg. o C. λ = 2379 kj/kg, λ s = 2200 kj/kg

q = m s λ s = (m f m)λ + m f c pf (T T f ) (100 markah) 7/- - 7-6. Satu cecair organik yang mengalir pada 4,500 kg/h disejukkan dari 105 hingga 78 o C di dalam satu penukar haba dwipaip yang mempunyai luas luaran 6.5 m 2. Satu cecair penyejuk yang mengalir pada 4,000 kg/h dan 35 o C digunakan. Paip dalam mempunyai diameter dalaman 3.5 cm dan ketebalan 0.36 cm. Paip luar mempunyai diameter dalaman 5.25 cm. Jika aliran adalah aruslawan, apakah suhu keluar untuk cecair penyejuk, LMTD, dan pekali pemindahan haba keseluruhan? Apakah nilai LMTD dan pekali pemindahan haba keseluruhan jika aliran ialah selari? (c) Lukiskan profil suhu untuk kedua-dua aliran aurslawan dan selari. Muatan haba untuk cecair organik ialah 2.280 kj/kg. o C dan yang untuk cecair penyejuk ialah 1.841 kj/kg. o C. 1 W = 1 J/s (100 markah)

8/-