Combined Flexure and Axial Load

Similar documents
Allowable Stress Design. Flexural Members - Allowable Stress Design. Example - Masonry Beam. Allowable Stress Design. k 3.

Combined Flexure and Axial Load

S. K. Ghosh Associates Inc. Outline. q Introduction: masonry basics and code changes. q Beams and lintels. q Non-bearing walls: out-of-plane

Unreinforced Masonry Design. SD Interaction Diagram

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

Inferences of Type II Extreme Value. Distribution Based on Record Values

ARCH 631 Note Set 21.1 S2017abn. Steel Design

Fig. 1: Streamline coordinates

What is Uniform flow (normal flow)? Uniform flow means that depth (and velocity) remain constant over a certain reach of the channel.

Structural Eurocodes EN 1995 Design of Timber Structures

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Section 7. Gaussian Reduction

Statistical Inference Procedures

rad / sec min rev 60sec. 2* rad / sec s

Questions about the Assignment. Describing Data: Distributions and Relationships. Measures of Spread Standard Deviation. One Quantitative Variable

CE 562 Structural Design I Midterm No. 1 Closed Book Portion (25 / 100 pts)

Chapter #5 EEE Control Systems

Case Study in Steel adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2 nd ed.

B U I L D I N G D E S I G N

Flight and Orbital Mechanics. Exams

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

X. Perturbation Theory

The Performance of Feedback Control Systems

8.6 Order-Recursive LS s[n]

C. C. Fu, Ph.D., P.E.

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

We will look for series solutions to (1) around (at most) regular singular points, which without

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

Performance-Based Plastic Design (PBPD) Procedure

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

5.1 WORKED EXAMPLE Header plate connection Geometrical and mechanical data e 1. p 1. e 2 p 2 e 2

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

The Binomial Multi- Section Transformer

Lenses and Imaging (Part II)

EECE 301 Signals & Systems Prof. Mark Fowler

1. Brillouin zones of rectangular lattice. Make a plot of the first two Brillouin zones of a primitive rectangular two-dimensional lattice with axes

Double Derangement Permutations

Queueing Theory (Part 3)

Statistics Parameters

STRUNET CONCRETE DESIGN AIDS

MATH 2411 Spring 2011 Practice Exam #1 Tuesday, March 1 st Sections: Sections ; 6.8; Instructions:

5.6 Binomial Multi-section Matching Transformer

Chapter #3 EEE Subsea Control and Communication Systems

Multistep Runge-Kutta Methods for solving DAEs

A typical reinforced concrete floor system is shown in the sketches below.

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

Chapter 8.2. Interval Estimation

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

Special Notes: Filter Design Methods

STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS

Exercise 8 CRITICAL SPEEDS OF THE ROTATING SHAFT

Case Study in Steel adapted from Structural Design Guide, Hoffman, Gouwens, Gustafson & Rice., 2 nd ed.

TESTS OF SIGNIFICANCE

4.8,.13 Friction and Buoyancy & Suction

Check the strength of each type of member in the one story steel frame building below.

Math 21C Brian Osserman Practice Exam 2

RAYLEIGH'S METHOD Revision D

Chapter Vectors

MATH Exam 1 Solutions February 24, 2016

m = Statistical Inference Estimators Sampling Distribution of Mean (Parameters) Sampling Distribution s = Sampling Distribution & Confidence Interval

Eigenfrequencies and Critical Speeds on a Beam due to Travelling Waves

Binomial transform of products

Supplementary Information

Chapter 2. Asymptotic Notation

18.05 Problem Set 9, Spring 2014 Solutions

Mechanical Vibrations

SHEAR LAG MODELLING OF THERMAL STRESSES IN UNIDIRECTIONAL COMPOSITES

Example of CLT for Symmetric Laminate with Mechanical Loading

Name Period ALGEBRA II Chapter 1B and 2A Notes Solving Inequalities and Absolute Value / Numbers and Functions

Engineering Mechanics Dynamics & Vibrations. Engineering Mechanics Dynamics & Vibrations Plane Motion of a Rigid Body: Equations of Motion

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST. First Round For all Colorado Students Grades 7-12 November 3, 2007

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Define a Markov chain on {1,..., 6} with transition probability matrix P =

6.4 Binomial Coefficients

5.6 Binomial Multi-section Matching Transformer

TESTING GEOGRIDS. Test Procedure for. TxDOT Designation: Tex-621-J 1. SCOPE 2. DEFINITION 3. SAMPLING 4. DETERMINING APERTURE SIZE

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

CALCULUS BASIC SUMMER REVIEW

: Transforms and Partial Differential Equations

Confidence Intervals. Confidence Intervals

Geometry Unit 3 Notes Parallel and Perpendicular Lines

ISSN Author: Ramesh Chandra Bagadi. Affiliation 3: Affiliation 1: Affiliation 2: Founder & Owner Ramesh Bagadi Consulting LLC (R420752),

UNIFORM FLOW. U x. U t

Group Technology and Facility Layout

Integrals of Functions of Several Variables

LLT Education Services

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data.

The Coupon Collector Problem in Statistical Quality Control

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Chapter 2: Numerical Methods

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

The Binomial Multi-Section Transformer

STA 4032 Final Exam Formula Sheet

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f

Gotta Keep It Correlatin

State space systems analysis

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

Electric Torques. Damping and Synchronizing Torques. Mechanical Loop. Synchronous Machine Model

Transcription:

Cobied Flexure ad Axial Load Iteractio Diagra Partiall grouted bearig wall Bearig Wall: Sleder Wall Deig Procedure Stregth Serviceabilit Delectio Moet Magiicatio Exaple Pilater Bearig ad Cocetrated Load Pretreed Maor Cobied Flexural ad Axial Load 1 Ke Code Sectio 5.3 Colu 5.4 Pilater 9.3. Deig auptio 9.3.4.1 Noial tregth 9.3.4.1.1 Noial axial ad lexural tregth Sectio 4.3.3 Radiu o gratio 9.3.5 Wall deig or out-o-plae load 9.3.5.1 Scope 9.3.5. Noial axial ad lexural tregth 9.3.5.3 Noial hear tregth 9.3.5.4 P-delta eect 9.3.5.5 Delectio Cobied Flexural ad Axial Load

Cocetric Axial Copreio P h h A A A 1 99 0.8 0.80 P 0.80 0.80 t t 140r 70r h A A A 99 t t h r r =0.9 A t = area o laterall tied teel P euler EI h EA r h 900 A r h A 94. r h Equatio above or CMU; or cla (E = 700 ), ter i (83.1r/h) Code equatio actuall derived ro ureiorced aor ad a o-teio aterial, but iilar to Euler buclig Icluio o wall weight Wall weight provide uior axial load over height o wall. Reaoable approxiatio i to ue hal the weight o wall actig at top. Cobied Flexural ad Axial Load 3 Buclig Curve or A t = 0 0.7 0.6 0.5 h/r = 99 P /(A ' ) 0.4 0.3 0. A P 0.8 0.80 h 1 140r 70r P 0.800.80 A h 0.1 0 0 50 100 150 00 h/r Cobied Flexural ad Axial Load 4

Radiu o Gratio 4.3.3 Radiu o gratio Radiu o gratio hall be coputed uig average et cro-ectioal area o the eber coidered. Quetio: I thi a trict average or weighted average? What about dieret tpe o uit (which chage bloc area)? What i the eect o bod bea? NCMA ha tabulated value o average radii o gratio baed o average o ortar bedded area ad bloc area. Beett oe ue / i the exaple ad preadheet. Ureiorced Maor 5 Iteractio Diagra Aue trai/tre ditributio Copute orce i aor ad teel Su orce to get axial orce Su oet about ceterlie to get bedig oet Ke poit Pure axial load Pure bedig Balaced Cobied Flexural ad Axial Load 6

Exaple 8 i. CMU Bearig Wall Give: 1 high CMU bearig wall, Tpe S aor ceet ortar; Grade 60 teel i ceter o wall; #4 @ 48 i.; partial grout; = 000 pi Required: Iteractio diagra i ter o capacit per oot Pure Moet: A Noial oet, M M A d 1 A 0.8b ' Deig oet, M M 0. 0.9 0.934 840 Chec to ae ure tre bloc i i ace hell A a 0.8b ' 0.05 0.8 1 i 60i i.0 i 0.156i Cobied Flexural ad Axial Load 7 Exaple 8 i. CMU Bearig Wall Pure Axial: NCMA TEK 14-1B Sectio Propertie o Cocrete Maor Wall r =.66 i. A = 40.7i / I = 33.0 i 4 / Fid h/r Fid P P 0.8 0.80 A A A t t h 1 140r 44.3 39. P 0.9 9 Uig...86. h/r = 50.4 = 40.8 / Cobied Flexural ad Axial Load 9

Exaple 8 i. CMU Bearig Wall 0.8 = 1.6 i T Balaced: Strai C Stre 3.81 i a = 0.8c = 0.8(.09i.) = 1.67i. web legth = Fid C C, ace hell C, web Fid T Fid P i 60i 0.05 3. T A 0 P M 0.1 5.96 Fid M Cobied Flexural ad Axial Load 11 Exaple 8 i. CMU Bearig Wall Below Balaced: c = 1.5 i. 0.005 1.5 i 3.81 i Strai 0.0051 0.8 = 1.6 i a = 0.8c 1.00 i Stre T Fid C ab 0.8.0i1.00i1 i 19. C 0.8 Fid T Fid i 60i 0.05 3. T A 0 C 0.9 19. 3.0 14. P -T 6 P M 14.6 4.77 Fid M 0.8 1.5i i 0.919. 3.81i 57. 4. 77 Cobied Flexural ad Axial Load 13

Exaple 8 i. CMU Bearig Wall Above Balaced: c = 3.0 i. 0.005 3.0 i 3.81 i Strai 0.00068 0.8 = 1.6 i C Stre T a = 0.8c = 0.8(3.0i.) =.4i. web legth =....0 Fid C Fid T Fid 0.80.0i1.5i1 i C 4, ace hell 0.80.0i.40i 1.5i.0 i 3. C 68, web i 0.00068 0.05 0. T E A 9000i 99 4.0 3.68 0.99 4. P 0.9 0 P M 4.0 6.8 Fid M 1.5i.40 1.5 0.94.0 3.81i 3.68 3.811.5 i 6. 8 Cobied Flexural ad Axial Load 14 Exaple 8 i. CMU Bearig Wall Poit c (i) C, (ip/) C,web (ip/) T (ip/) P (ip/) M (ip-/) a = d 4.76 4.0 8. 0 9.0 6.5 c = d 3.81 4.0 5.8 0 6.8 6.45 3.00 4.0 3.7 1.0 4.0 6.8 Balaced.09 4.0 1.3 3.0 0.1 5.97 a = 1.5 i. 1.56 4.0 0 3.0 18.9 5.73 1.5 19. 0 3.0 14.6 4.77 1.0 15.4 0 3.0 11.1 3.93 0.8 1.3 0 3.0 8.4 3. 0.6 9. 0 3.0 5.6.47 0.4 6.1 0 3.0.8 1.68 Pure Moet 0.195 3.0 0 3.0 0 0.84 Cobied Flexural ad Axial Load 15

Exaple 8 i. CMU Bearig Wall Cobied Flexural ad Axial Load 16 Iteractio Diagra Solid v. Partial Grout Cobied Flexural ad Axial Load 17

Iteractio Diagra Below Balaced Teio, T Copreio, C Noial Axial Stregth, P T A C 0. 8 ba P C T 0. 80 ba A Solve or a Noial Moet Stregth, M a M A P 0.80 b tp a 0.8 ba A t a tp d t p p P A A d Ca olve or M i P i ow Cobied Flexural ad Axial Load 18 Iteractio Diagra Below Balaced φp M u, P u I we could ol ow oe poit o the iteractio diagra, we would wat to ow the poit correpodig to P = P u φm a A P / 0.80 b u M t a p p Pu / A A d t Thee are equatio i 9.3.5. coetar. The igore a teio i a poible ecod laer o teel ear the copreio ace). M For cetered bar: a Pu / A d Cobied Flexural ad Axial Load 19

Deig: Cobied Bedig ad Axial Load a d d Pu d t Calculate p 0.8 b / M u c a 0.8 YES I c c bal? For Grade 60 teel c bal = 0.547 c bal u u d NO A 0.8 ba Pu / d c ue c Copreio cotrol A 0.8 ba Pu / Teio cotrol Cobied Flexural ad Axial Load 0 Exaple: Pilater Deig Give: Noial 16 i. wide x 16 i. deep CMU pilater; =000 pi; Grade 60 bar i each corer, ceter o cell; Eective height = 4 ; Dead load o 9.6 ip ad ow load o 9.6 ip act at a eccetricit o 5.8 i. ( i. iide o ace); Wid load o 6 p (preure ad uctio) ad upli o 8.1 ip (e=5.8 i.); Pilater paced at 16 o ceter; Wall i aued to pa horizotall betwee pilater; No tie. Required: Reiorceet Solutio: e=5.8 i.0 i Load d=11.8 i x Iide Lateral Load w = 6p(16) = 416lb/ d = 15.65 7.65/ = 11.8 i Vertical Spaig Cobied Flexural ad Axial Load 1

Exaple: Pilater Deig Weight o pilater: Weight o ull grouted 8 i wall (lightweight uit) i 75 p. Pilater i lie a double thic wall. Weight i (75p)(16i)(1/1i) = 00 lb/ 1.D + 1.6S Critical locatio i top o pilater. P u = 6.9 ip M u = 156.0 ip-i Fid a a d d 11.8i Pu d h / 0.8 11.8i b M u 6.9 11.8 0.9 i 15.6i / 0.8.0 i15.6i 156 i 1.04i c a / 0.8 1.04i./ 0.8 Chec c/d 0.110 0. 547 d d 11.8i. Teio cotrol Fid A 0.8 ba Pu / 0.8 A.0i15.6i1.04i 6.9 / 0.9 60i 0.066i Cobied Flexural ad Axial Load Exaple: Pilater Deig Wh the egative area o teel? Suiciet area ro jut aor to reit applied orce. Deterie a ro jut copreio. Pu 6.9ip a 1. 08i 0.8 b 0.8.0i 15.6i Fid the oet t a 15.6i 1.08i M P u 6.9ip 195ip i M u = 156 ip-i Suiciet capacit ro jut aor. No teel eeded. Cobied Flexural ad Axial Load 3

Exaple: Pilater Deig 0.9D + 1.0W Chec wid uctio At top o pilater. P u = 0.9(9.6) 1.0(8.1) = 0.54 ip M u = 0.54ip(5.8i) = 3.1 ip-i Locatio o axiu oet, x Maxiu oet, M u Axial orce, P u L M 88i 3.1ip i x 143. 7i wl 0.416ip / 4 M u M wl 8 M wl 3.1 i 0.03467 / i 88i 8 (3.1 i) 0.03467 / i88i 0.0 / 143.7i1 /1i. P u 0.54 0.9 69 Aue idheight oet i ~ M u. Third ter i M u add 0.00 -i. 361.0 i Deig or P u =.7 ip, M u = 361 -i Cobied Flexural ad Axial Load 4 Exaple: Pilater Deig 0.9D + 1.0W 1.D + 1.0W + 0.5S At top: P u =0.5 M u =3 -i x=144 i P u =.7 M u =361 -i a = 1.49 i A = 0.57 i At top: P u =8. M u =48-i x = 139i P u =11.0 M u =384-i a = 1.74 i A = 0.5 i 1.D + 1.6S + 0.5W At top: P u =.8 M u =13-i x=117i P u =5. M u =5-i a = 1.41 i A = 0.1 i Required teel = 0.57 i Ue -#5 each ace, A = 0.6 i Total bar, 4-#5, oe i each cell Cobied Flexural ad Axial Load 5

Exaple: Pilater Deig 1.D+1.6S 1.D+1.6S+0.5W 1.D+1.0W+0.5S 0.9D+1.0W Cobied Flexural ad Axial Load 6