Li in a WbLS Detector

Similar documents
Solar and atmospheric ν s

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Solar Neutrino Road Map. Carlos Pena Garay IAS

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Past, Present, and Future of Solar Neutrino Physics

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014

Solar Neutrinos in Large Liquid Scintillator Detectors

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Scintillator phase of the SNO+ experiment

Status of Solar Neutrino Oscillations

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

Super-Kamiokande ~The Status of n Oscillation ~

Solar Neutrino Oscillations

Sensitivity of a low threshold directional detector to CNO-cycle solar neutrinos

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Astrophysical Neutrino at HK

Neutrinos in Supernova Evolution and Nucleosynthesis

Recent development in Neutrino Physics and Astrophysics LNGS, September 4-7, 2017

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Overview of Reactor Neutrino

Recent results from Super-Kamiokande

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Relations between the SNO and the Super Kamiokande solar. Waikwok Kwong and S. P. Rosen

Metallicities in stars - what solar neutrinos can do

Outline. (1) Physics motivations. (2) Project status

Proton decay and neutrino astrophysics with the future LENA detector

WHY DO SOLAR NEUTRINO EXPERIMENTS BELOW 1 MEV? a

THE SUPER-KAMIOKANDE SOLAR ANALYSIS χ 2

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Neutrino Oscillations

hep-ph/ Oct 1994

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Neutrino oscillation experiments: Recent results and implications

1. Neutrino Oscillations

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Recent Results from T2K and Future Prospects

Neutrino Oscillations and the Matter Effect

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

( Some of the ) Lateset results from Super-Kamiokande

MULTIPURPOSE MONOJETS AT THE LHC: NEUTRINOS & DARK MATTER

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Updating the Status of Neutrino Physics

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Neutrino Oscillations

arxiv:hep-ph/ v1 30 Mar 2000

Radio-chemical method

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

Neutrino oscillation physics potential of Hyper-Kamiokande

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

4p 4 He + 2e + +2ν e. (1)

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Recent Discoveries in Neutrino Physics

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

Detection of MeV scale neutrinos and the solar energy paradigm

The Hyper-Kamiokande project

Test of Non-Standard Interactions at Super-K

Solar Neutrinos II: New Physics

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

arxiv: v1 [hep-ex] 30 Nov 2009

Background and sensitivity predictions for XENON1T

Workshop Towards Neutrino Technologies July Prospects and status of LENA

Reactor Neutrino Oscillation Experiments: Status and Prospects

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI)

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

Solar neutrinos and the MSW effect

arxiv: v1 [astro-ph.sr] 18 Jul 2018

DAEδALUS. A Path to Measuring δ CP Using Cyclotron Decay-at-Rest Neutrino Sources. NOW 2012 Matt Toups, MIT. M. Toups, MIT -- NOW

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

Where do we stand with solar neutrino oscillations?

Search for b Ø bz. CDF note Adam Scott, David Stuart UCSB. 1 Exotics Meeting. Blessing

- Future Prospects in Oscillation Physics -

The DAEδALUS at Hyper-K Experiment: Searching for CP Violation. Mike Shaevitz - Columbia University for the DAEδALUS ALUS Collaboration

Short baseline neutrino oscillation experiments at nuclear reactors

How large is the "LSND anomaly"?

Prospects for Measuring Higgs self-coupling at FCC 100 TeV hadron collider. Weiming Yao (LBNL)

Measurements of R K and R K* at LHCb

Direct measurement of the W boson production charge asymmetry at CDF

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Beam Dump Experiments at JLab and SLAC

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

SNO: Predictions for ten measurable quantities

Is nonstandard interaction a solution to the three neutrino tensions?

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Gadolinium Doped Water Cherenkov Detectors

BNL Very Long Baseline Neutrino Oscillation Expt.

What can be learned by measuring the fluxes of the 7 Be and the pep solar neutrino lines?

Studies of pentaquarks at LHCb

Ara N. Ioannisian YerPhI and ITPM, Armenia CERN

RESULTS FROM B-FACTORIES

Transcription:

7 Li in a WbLS Detector Gabriel D. Orebi Gann JinPing Solar Workshop, LBNL June 10th, 2014 U. C. Berkeley & LBNL

Probing the Transition Region: why we need 8 B Largest affect on shape of survival probability R. Bonventre Best fit Pee for scalar long-range forces Δχ 2 = 2.9 C.L. = 0.58 R / R 8B produced closest into the core of the Sun Phys. Rev. D 88 (2013) 053010

Concept Load WbLS detector with 7 Li CC interaction (E )= G2 F cos2 c k e E e F(Z +1,E e )d cos de e 2 [1.0(1 + cos ) (E 0.35 E e ) +1.7471(1 1 3 cos ) (E 0.35 E e ) +1.6303(1 1 3 cos ) (E 0.35 0.4291 E e ) +0.01135(1 1 3 cos ) (E 0.35 6.73 E e ) +0.07317(1 1 3 cos ) (E 0.35 7.21 E e )] Cross section from W. C. Haxton W.C. Haxton PRL 76 (1996) 10

Concept Load WbLS detector with 7 Li CC interaction ES (E )= G2 F cos2 c k e E e F(Z +1,E e )d cos de e 2 [1.0(1 + cos ) (E 0.35 E e ) +1.7471(1 1 3 cos ) (E 0.35 E e ) +1.6303(1 1 3 cos ) (E 0.35 0.4291 E e ) +0.01135(1 1 3 cos ) (E 0.35 6.73 E e ) +0.07317(1 1 3 cos ) (E 0.35 7.21 E e )] Cross section from W. C. Haxton W.C. Haxton PRL 76 (1996) 10

Concept Load WbLS detector with 7 Li CC interaction ES (E )= G2 F cos2 c k e E e F(Z +1,E e )d cos de e 2 [1.0(1 + cos ) (E 0.35 E e ) 1 CC 8B +1.7471(1 3 cos ) (E 0.35 E e ) +1.6303(1 1 3 cos ) (E 0.35 0.4291 E e ) +0.01135(1 1 3 cos ) (E 0.35 6.73 E e ) +0.07317(1 1 3 cos ) (E 0.35 7.21 E e )] Cross section from W. C. Haxton W.C. Haxton PRL 76 (1996) 10

Concept Load WbLS detector with 7 Li CC interaction ES CC CNO (E )= G2 F cos2 c k e E e F(Z +1,E e )d cos de e 2 [1.0(1 + cos ) (E 0.35 E e ) 1 CC 8B +1.7471(1 3 cos ) (E 0.35 E e ) +1.6303(1 1 3 cos ) (E 0.35 0.4291 E e ) +0.01135(1 1 3 cos ) (E 0.35 6.73 E e ) +0.07317(1 1 3 cos ) (E 0.35 7.21 E e )] Cross section from W. C. Haxton W.C. Haxton PRL 76 (1996) 10

Detector Parameters Target composition (# targets) - - % Li loading (5%) WbLS cocktail composition Detector mass & livetime (1kT, 10 yrs) 210 Bi background (for CNO study) (Bx) Energy threshold (varies) Lightyield: p.e. / MeV (100) detector response fn R = " 1 p 2 (Te ) exp # (T eff T e ) 2 2 2

Directionality SK III angular resolution Cut on cosθ (of course one would fit!) Select CC (reject ES) - weak +ve slope Select ES, reject bkg e.g. 210Bi

Solar Neutrino Energy Spectra pp 7 Be 13 N 7 Be pep 15 O 8 B 17 F hep

Detected Spectrum cosθ < 0.4

Detected Spectrum cosθ < 0.4

8 B Study Neutrino spectrum * Pee for model n Convolve with x-sec, detector response Predicted detected electron spectrum Create fake data set (i.e. poisson fluctuate) Fit to predicted spectrum for MSW Float norm ± 4% (SNO uncert) Take residuals, find χ 2 NB currently background-free model

Pee Models (1) Flat survival probability Pee = 0.35 (2) - (37) NSI models from A. Friedland

Detected Spectra Flat survival probability Pee = 0.35 (1) No cosθ cut (2) cosθ < 0.8

Residuals CC: 98.8% ES: 62.0% 1kT Ethresh = 1.5MeV

1kT: 5% loading, 10 yrs 10kT+: 1% loading, 5 yrs Rejecting Null Hypothesis Detector Size 1kT

Rejecting Null Hypothesis Detector Size 35 30 10kT 1kT CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis 1kT: 5% loading, 10 yrs 10kT+: 1% loading, 5 yrs

Rejecting Null Hypothesis Detector Size 35 30 10kT 20kT 1kT CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 1kT: 5% loading, 10 yrs 10kT+: 1% loading, 5 yrs Significance of rejection of null hypothesis

Rejecting Null Hypothesis Detector Size 35 30 10kT 20kT 50kT 1kT CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 1kT: 5% loading, 10 yrs 10kT+: 1% loading, 5 yrs Significance of rejection of null hypothesis

Rejecting Null Hypothesis Detector Size 35 30 10kT 20kT 50kT 70kT 1kT CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 1kT: 5% loading, 10 yrs 10kT+: 1% loading, 5 yrs Significance of rejection of null hypothesis

Rejecting Null Hypothesis Detector Size 35 30 100kT 10kT 20kT 50kT 70kT 1kT CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 1kT: 5% loading, 10 yrs 10kT+: 1% loading, 5 yrs Significance of rejection of null hypothesis

Rejecting Null Hypothesis Light collection 35 20kT, 50 pe/mev 30 CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis

Rejecting Null Hypothesis Light collection 35 20kT, 100 50 pe/mev 30 CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis

Rejecting Null Hypothesis Light collection 35 20kT, 100 150 pe/mev 30 CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis

Rejecting Null Hypothesis Energy threshold 35 30 20kT, 100 pe/mev, Eth = 1.0MeV CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis

Rejecting Null Hypothesis Energy threshold 35 30 20kT, 100 pe/mev, Eth = 1.0MeV 1.5MeV CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis

Rejecting Null Hypothesis Energy threshold 35 30 20kT, 100 pe/mev, Eth = 1.0MeV 2.0MeV 1.5MeV CC 25 ES 20 15 10 5 0 0 1 2 3 4 5 Significance of rejection of null hypothesis

CNO study Full 1D extended Likelihood fit (Teff) Include major backgrounds: 210 Bi pep 7 Be Fix F to 0.01 * (N+O) Constrain (N - O) / (N + O) to 0.15 ± 30%

CNO PDFs 1kT 5% 7 Li 100 pe/mev Ethresh = 0.4 MeV 210 Bi at Bx level No cut on cosθ

CNO PDFs 1kT 5% 7 Li 100 pe/mev Ethresh = 0.4 MeV 210 Bi at Bx level cosθ < 0.4

CNO Sample Fit 1kT 5% 7 Li 100 pe/mev Ethresh = 0.4 MeV 210 Bi at Bx level No cut on cosθ

CNO Sample Fit 1kT 5% 7 Li 100 pe/mev Ethresh = 0.4 MeV 210 Bi at Bx level cosθ < 0.4

1kT 5% 7 Li 100 pe/mev Ethresh = 0.4 MeV 210 Bi at Bx level No cut on cosθ CNO Sample Fit Single CNO Individual F/N/O Nev % uncert Nev % uncert 13N 15O 17F / CNO 7Be pep 210Bi 28677 9.3% 55734 4.0% 85801 3.9% 1389 6.1% 6.50E+05 0.3% 6.50E+05 0.3% 7.30E+04 1.9% 7.30E+04 1.9% 1.10E+05 3.4% 1.10E+05 3.9%

1kT 5% 7 Li 100 pe/mev Ethresh = 0.4 MeV 210 Bi at Bx level cosθ < 0.4 CNO Sample Fit Single CNO Individual F/N/O Nev % uncert Nev % uncert 13N 15O 17F / CNO 7Be pep 210Bi 656 11.8% 2594 7.8% 3315 7.7% 65 9.3% 2461 21.5% 2461 21.8% 4388 3.7% 4388 3.7% 76221 1.2% 76221 1.2%

CNO Comments The fit is surprisingly good! (Tests ongoing) Not very sensitive to resolution, size etc (beyond obvious scaling) Stats beat shape i.e. addition of CC does not improve fit uncertainty (2D fit clearly beats both!) But: cut on cosθ reduces correlations Safer when introducing systematics!

Thank you for your attention

Back-up slides

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape P ee! JHEP 0311:004 (2003) E υ!

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape Low energy: Phase-averaged vacuum oscillations P ee! JHEP 0311:004 (2003) E υ!

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape Low energy: Phase-averaged vacuum oscillations P ee! High energy: Matter-dominated resonant conversion JHEP 0311:004 (2003) E υ!

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape In these regimes, Pee depends only on θ12, Low energy: Phase-averaged vacuum oscillations P ee! High energy: Matter-dominated resonant conversion JHEP 0311:004 (2003) E υ!

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape In these regimes, Pee depends only on θ12, Not the mass splitting or neutrino-matter interaction Low energy: Phase-averaged vacuum oscillations P ee! High energy: Matter-dominated resonant conversion JHEP 0311:004 (2003) E υ!

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape In these regimes, Pee depends only on θ12, Not the mass splitting or neutrino-matter interaction Low energy: Phase-averaged vacuum oscillations P ee! High energy: Matter-dominated resonant conversion Probe transition region to confirm MSW & search for new physics! JHEP 0311:004 (2003) E υ!

Non-Standard Model Testing Light sterile neutrino PRD 83:113011 (2011) Non-standard MSW Dynamics PRD 83:101701 (2011) Non-Standard Models, Solar Neutrinos and Large θ13 PRD 88: 053010 (2013) Non-standard forward scattering Mass-varying neutrinos Long-range leptonic forces Non-standard solar model Results limited by experimental precision Best fit Pee for fermiondensity dependent MaVaN model Δχ 2 = 3.4 C.L. = 0.81 Phys. Rev. D 88 (2013) 053010

Non-Standard Model Testing Light sterile neutrino PRD 83:113011 (2011) Non-standard MSW Dynamics PRD 83:101701 (2011) Non-Standard Models, Solar Neutrinos and Large θ13 PRD 88: 053010 (2013) Non-standard forward scattering Mass-varying neutrinos Long-range leptonic forces Non-standard solar model Results limited by experimental precision No significant effects (< 2σ) Best fit Pee for fermiondensity dependent MaVaN model Δχ 2 = 3.4 C.L. = 0.81 Phys. Rev. D 88 (2013) 053010

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape (2) Understanding stellar formation: The metallicity of the Sun s core

Questions Beyond the SNP (1) Searching for new physics: νe survival probability shape (2) Understanding stellar formation: The metallicity of the Sun s core

Low Energy Neutrino Astronomy 50kT (30kT FV solar), 30% coverage Unprecedented statistics 3σ discovery potential for 0.5%- amplitude temporal fluctuations in 7 Be CC on 13 C J. Winter et al, TAUP 2011 Proc. http://www.e15.ph.tum.de/research_and_projects/lena/

(C) Metallicity Status Largest effect on pp-chain flux: ~17% reduction of 8 B (± 14% theory) Hard to distinguish Not characteristic

(C) Metallicity Status Largest effect on pp-chain flux: ~17% reduction of 8 B (± 14% theory) Hard to distinguish Not characteristic SNO s 8 B obeys the ambiguity principle: Ambiguity Principle: For any given experimental test of a hypothesis, Nature will always strive to return the most ambiguous answer possible --- J. R. Klein

(C) Metallicity Status Largest effect on pp-chain flux: ~17% reduction of 8 B (± 14% theory) Hard to distinguish Not characteristic SNO s 8 B obeys the ambiguity principle: Ambiguity Principle: For any given experimental test of a hypothesis, Nature will always strive to return the most ambiguous answer possible --- J. R. Klein CNO flux depends linearly on core metallicity Predictions differ by >30%

(C) Metallicity Status Largest effect on pp-chain flux: ~17% reduction of 8 B (± 14% theory) Hard to distinguish Not characteristic SNO s 8 B obeys the ambiguity principle: Ambiguity Principle: For any given experimental test of a hypothesis, Nature will always strive to return the most ambiguous answer possible --- J. R. Klein CNO flux depends linearly on core metallicity Predictions differ by >30% Borexino have the only direct limit: 2-3 * SSM prediction PRL 108, 051302 (2012)