Electromagnetic characterization of magnetic steel alloys with respect to the temperature

Similar documents
Easter bracelets for years

Lorentz force velocimetry using small-size permanent magnet systems and a multi-degree-of-freedom force/torque sensor

A new simple recursive algorithm for finding prime numbers using Rosser s theorem

Interactions of an eddy current sensor and a multilayered structure

Case report on the article Water nanoelectrolysis: A simple model, Journal of Applied Physics (2017) 122,

Natural convection of magnetic fluid inside a cubical enclosure under magnetic gravity compensation

Simultaneous Induction Heating and Electromagnetic Stirring of a Molten Glass Bath

Can we reduce health inequalities? An analysis of the English strategy ( )

Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma.

Vibro-acoustic simulation of a car window

Dispersion relation results for VCS at JLab

Numerical Modeling of Eddy Current Nondestructive Evaluation of Ferromagnetic Tubes via an Integral. Equation Approach

Thomas Lugand. To cite this version: HAL Id: tel

Exogenous input estimation in Electronic Power Steering (EPS) systems

IMPROVEMENTS OF THE VARIABLE THERMAL RESISTANCE

Modeling of Electromagmetic Processes in Wire Electric Discharge Machining

Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series

The magnetic field diffusion equation including dynamic, hysteresis: A linear formulation of the problem

Improvement of YBCO Superconductor Magnetic Shielding by Using Multiple Bulks

Computation and Experimental Measurements of the Magnetic Fields between Filamentary Circular Coils

Towards an active anechoic room

On the Earth s magnetic field and the Hall effect

b-chromatic number of cacti

Numerical Simulation of MHD Processes in the Technology of Non-crucible Induction Melting of Titanium Alloys

Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

Passerelle entre les arts : la sculpture sonore

Eddy-Current Effects in Circuit Breakers During Arc Displacement Phase

Determination of absorption characteristic of materials on basis of sound intensity measurement

Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

Stator/Rotor Interface Analysis for Piezoelectric Motors

Characterization of the local Electrical Properties of Electrical Machine Parts with non-trivial Geometry

Theoretical calculation of the power of wind turbine or tidal turbine

Multiple sensor fault detection in heat exchanger system

Using multitable techniques for assessing Phytoplankton Structure and Succession in the Reservoir Marne (Seine Catchment Area, France)

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

Completeness of the Tree System for Propositional Classical Logic

Full-order observers for linear systems with unknown inputs

AC Transport Losses Calculation in a Bi-2223 Current Lead Using Thermal Coupling With an Analytical Formula

Water Vapour Effects in Mass Measurement

L institution sportive : rêve et illusion

On the longest path in a recursively partitionable graph

Cutwidth and degeneracy of graphs

A new approach of the concept of prime number

Soundness of the System of Semantic Trees for Classical Logic based on Fitting and Smullyan

Finite element computation of leaky modes in straight and helical elastic waveguides

Antipodal radiation pattern of a patch antenna combined with superstrate using transformation electromagnetics

GENERALIZED OPTICAL BISTABILITY AND CHAOS IN A LASER WITH A SATURABLE ABSORBER

Simulation and measurement of loudspeaker nonlinearity with a broad-band noise excitation

From Unstructured 3D Point Clouds to Structured Knowledge - A Semantics Approach

On size, radius and minimum degree

On the beam deflection method applied to ultrasound absorption measurements

Stickelberger s congruences for absolute norms of relative discriminants

RHEOLOGICAL INTERPRETATION OF RAYLEIGH DAMPING

STATISTICAL ENERGY ANALYSIS: CORRELATION BETWEEN DIFFUSE FIELD AND ENERGY EQUIPARTITION

Hook lengths and shifted parts of partitions

New Basis Points of Geodetic Stations for Landslide Monitoring

Optical component modelling and circuit simulation using SERENADE suite

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

A Simple Proof of P versus NP

Numerical Exploration of the Compacted Associated Stirling Numbers

Quantum efficiency and metastable lifetime measurements in ruby ( Cr 3+ : Al2O3) via lock-in rate-window photothermal radiometry

Inductive thermography nondestructive testing applied to carbon composite materials: multiphysics and multiscale modeling

Evaluation of the Magnetic Fields and Mutual Inductance between Circular Coils Arbitrarily Positioned in Space

Analysis of Boyer and Moore s MJRTY algorithm

Impedance Transmission Conditions for the Electric Potential across a Highly Conductive Casing

How to make R, PostGIS and QGis cooperate for statistical modelling duties: a case study on hedonic regressions

Sound intensity as a function of sound insulation partition

Solving the neutron slowing down equation

Spatial representativeness of an air quality monitoring station. Application to NO2 in urban areas

Improving the Jet Reconstruction with the Particle Flow Method; an Introduction

Numerical modification of atmospheric models to include the feedback of oceanic currents on air-sea fluxes in ocean-atmosphere coupled models

Predicting the risk of non-compliance to EMC requirements during the life-cycle

Estimation and Modeling of the Full Well Capacity in Pinned Photodiode CMOS Image Sensors

SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH

A Simple Model for Cavitation with Non-condensable Gases

Performance analysis of clouds with phase-type arrivals

The beam-gas method for luminosity measurement at LHCb

Solution to Sylvester equation associated to linear descriptor systems

Nonlocal computational methods applied to composites structures

Flow behaviors driven by a rotating spiral permanent magnetic field

A NON - CONVENTIONAL TYPE OF PERMANENT MAGNET BEARING

About the implementation of the finite element method for computer aided education in electrical engineering

Control of an offshore wind turbine modeled as discrete system

HIGH RESOLUTION ION KINETIC ENERGY ANALYSIS OF FIELD EMITTED IONS

There are infinitely many twin primes 30n+11 and 30n+13, 30n+17 and 30n+19, 30n+29 and 30n+31

A New Integral Formulation for Eddy Current Computation in Thin Conductive Shells

On Symmetric Norm Inequalities And Hermitian Block-Matrices

Impulse response measurement of ultrasonic transducers

A Study of the Regular Pentagon with a Classic Geometric Approach

A Slice Based 3-D Schur-Cohn Stability Criterion

Self Field Effect Compensation in an HTS Tube

Tropical Graph Signal Processing

Dynamic Thermal Analysis of a Power Amplifier

Coupling 3D modelling and forward-inverse modelling of potential field data (gravity and magnetic data).

On path partitions of the divisor graph

On production costs in vertical differentiation models

FORMAL TREATMENT OF RADIATION FIELD FLUCTUATIONS IN VACUUM

Beat phenomenon at the arrival of a guided mode in a semi-infinite acoustic duct

A non-linear simulator written in C for orbital spacecraft rendezvous applications.

Transcription:

Electromagnetic characterization of magnetic steel alloys with respect to the temperature B Paya, P Teixeira To cite this version: B Paya, P Teixeira. Electromagnetic characterization of magnetic steel alloys with respect to the temperature. 8th International Conference on Electromagnetic Processing of Materials, Oct 215, Cannes, France. EPM215. <hal-1333892> HAL Id: hal-1333892 https://hal.archives-ouvertes.fr/hal-1333892 Submitted on 2 Jun 216 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electromagnetic characterization of magnetic steel alloys with respect to the temperature B. PAYA 1a and P. TEIXEIRA 1b 1 EDF R&D Division. EPI Department, EDF Lab Les Renardières, Avenue des Renardières, F-77818 Moret sur Loing Cedex, France a bernard.paya@edf.fr, b philippe.teixeira@edf.fr Corresponding author: bernard.paya@edf.fr Abstract Because of a lack of data, numerical models of induction heating use approximations to describe the temperature dependence of the magnetization curve. Thanks to our measuring equipment acquired in 213, we are now able to measure the true behavior of ferrous alloys from room temperature to 1,2 C, sometimes far away from the assumptions commonly used in many software. Key physical quantities and their evolution with temperature are obtained: saturated magnetization, maximal susceptibility and resistivity. They are compared to analytical approximations proposed by commercial software which are not in agreement with the measurements. New analytical approximations are proposed. We also describe the strange behavior of some special alloys designed for specific mechanical properties. The electromagnetic properties are not reversible with regard to the temperature, describing a kind of hysteretic loop during heating and cooling phases. Keywords: Magnetic properties; electrical properties; temperature dependence; numerical modeling; measurement Introduction: lack of physical data for numerical simulation of induction heating Numerical modeling of induction heating device often suffers from a lack of physical data, especially the temperature dependence of the magnetization curves or the resistivity. To fill this gap, EDF acquired a unique equipment supplied by the German company Magnet-Physik Steingroever GmbH, able to measure the magnetization curve and the resistivity during the same thermal cycle up to 1,2 C. After a short description of the measuring device, we present first the results of the characterization of 38MnSiV5 magnetic steel. The measures are compared to analytical approximations commonly used in commercial software. We also show unexpected behavior of special alloys designed for specific mechanical properties. Description of the measurement equipment Fig. 1: schematic overview of the measurement unit This equipment presented in detail in [1] is consisting of 4 main functions (Fig. 1): - Permeameter: device providing the measurement of magnetic polarization curves. A bar of the specimen is placed inside two concentric coils: the exciting coil providing the magnetic field thanks to a controlled current source, and

Resistivity (1-8.m) Saturated magnetization (T) maximal susceptibility the measuring coil collecting the magnetic flux to the flux meter. The measuring coil is specially designed in a socalled J-compensated configuration that compensates the air magnetization and gives directly the magnetization of the sample [2]. - Resistivimeter: device providing the measurement of electrical resistivity using a 4-points configuration. Type K thermocouples are spot-welded on both ends of the specimen and connected to the current source and the microvoltmeter. - Furnace: device providing the heating from room temperature up to 1,2 C. The heating element is a bifilar platinum resistor configured to minimize magnetic field generation when heating. A water jacket prevents the permeameter s coils from heating. Furnace temperature is controlled by a PID regulation during heating and cooling phases. - Driving and supervising device: computer providing manual or automatic driving of the other equipments, the follow-up of the running measurement campaign and the transfer of measures to other computers. Dedicated software is developed for this purpose. The different temperature steps are defined before the campaign starts. At each step, the resistivity measurement is done first and the magnetization curve, then. Measurement results are available in text files, Excel files or by magnetization curves drawing. Example of a measurement campaign: characterization of 38MnSiV5 steel The specimen to be characterized had a parallelepiped shape 4x4x15 mm 3. Two thermocouples used for the 4 points resistivity measurement are spot-welded on both ends. Another thermocouple is also spot-welded in the middle for the sample temperature measurement. The heating cycle starts from room temperature up to 1, C, then down to room temperature: the whole campaign lasts about 6 hours. Two samples of the same alloy are characterized to make sure of the reproducibility of the measures. Magnetization curves and electrical resistance are recorded at each temperature step. From these measures, physical quantities are calculated: saturated magnetization, maximal susceptibility and resistivity. These values are plotted in the following figures. The shape of the dot corresponds to the characterized sample; the red and blue colors correspond respectively to the heating and cooling phase. 2 1,5 1,5 3 2 1 2 4 6 8 2 4 6 8 Fig. 2: saturated magnetization of 38MnSiV5 Fig. 3: Maximal susceptibility of 38MnSiV5 14 12 1 8 6 4 2 2 4 6 8 1 Fig. 4: Resistivity of 38MnSiV5

Analytical approximation of the physical properties Commercial software, such as FLUX, proposes analytical models to describe the physical properties of material [3]. So, the magnetization J can be described using a univocal relationship with the magnetic field H and the temperature T: J H, T = 2 J sat π tan 1 χ m π 2 J sat μ H F T (1) and F T = 1 e T T c C for T T C (Curie temperature) (2) In this case, both the saturated magnetization J sat T and the maximal susceptibility χ m T follow the same evolution with the temperature corresponding to the equation (2). The corresponding curves are drawn in orange in Fig. 2 and Fig. 3; as you can see, they do not fit with the experimental data. To better describe the temperature behavior, we propose the following relationships: J H, T = 2 J sat T π tan 1 χ m T π 2 J sat T μ H (3) with J sat T = J sat 1 a T 1 e T T c C J (4) and χ m T = χ m χ m min T T min 1 2 + χ m min 1 e T Tc Cχ (5) The corresponding curves are drawn in green in Fig. 2 and Fig. 3. The saturated magnetization curve fits very well with the experiments. The susceptibility curve fits better than the previous one especially at temperature close to Curie temperature. One must keep in mind that the measure of the susceptibility with our equipment is not very accurate. Commercial software do not propose analytical model of the resistivity which present an inflection point; the closest model available has an exponential shape. ρ T = ρ a + ρ b 1 e T T τ (6) When using this equation (6), it is possible to describe the resistivity, either in the low (Fig. 4, purple curve) or high (Fig. 4, orange curve) temperature range. Unfortunately, the continuity of the function and its derivate is not respected, especially close to the transition temperature T trans. We propose another way to write this relationship: T ρ T = ρ α eτ + 1 α for T T trans ρ T = ρ α e T τ + 1 for T T trans (7) The continuity of the function and its derivate is obtained by verifying the two following equations giving relationship between the low and high temperature parameters. The corresponding curve drawn in green in Fig. 4 better agrees with the experiments. ρ α T trans e τ τ ρ = ρ α e T trans τ = ρ α τ e T trans τ 1 + τ τ + 1 α (8) The temperature hysteresis: an unexpected behavior Some special steel alloys are designed for specific mechanical properties. When characterizing them for numerical modeling of induction heating, we observed an unexpected behavior. The electric and magnetic properties were sensitive to the history of the heating. During the heating phase, the specimen loses its magnetic property at a high Curie temperature but it recovers it more slowly during cooling phase. Resistivity evolution has also a hysteretic behavior almost in the same temperature range. To show an example of this phenomenon, characterization of 16MND5 steel is presented in Fig. 5 to Fig. 7.

Resistivity (1-8.m) Saturated magnetization (T) maximal susceptibility 2 6 1,5 1 4,5 2 2 4 6 8 2 4 6 8 Fig. 5: saturated magnetization of 16MND5 Fig. 6: Maximal susceptibility of 16MND5 14 12 1 8 6 4 2 2 4 6 8 1 Fig. 7: Resistivity of 16MND5 In this case, the resistivity presents a hysteresis between Curie temperature (75 C) down to 3 C approximately. At room temperature, the saturated magnetization is almost the same before and after the thermal cycle but the maximal susceptibility is much lower: the heat treatment has shifted down the magnetization curve. To measure relevant properties for numerical simulation, we should so take care of the preparation of the specimen. It should be extracted from the piece before the heating process. We should avoid heating during the cutting process: electro-erosion is a relevant way to cut the piece without heating it. Otherwise, the measured characteristics may differ from reality and give wrong results in numerical simulation. Conclusion: Thanks to our measuring equipment acquired in 213, we are now able to measure the true behavior of ferrous alloys from room temperature to 1,2 C. Key physical quantities and their evolution with temperature are obtained: saturated magnetization, maximal susceptibility and resistivity. Analytical approximations are proposed for numerical models. We also show that some special alloys designed for specific mechanical properties present a kind of hysteretic loop respect to the temperature during heating and cooling phases. Consequently, caution should be exercised for the material characterization. Acknowledgment Characterization of MnSiV5 steel takes place in Optipro-Indux Project (ANR-21-RMNP-11), with financial support of the French Research National Agency (ANR). References [1] B. Paya, P. Teixeira, Measurement of Electrical and Magnetic Properties of Steels at Elevated Temperature, International Conference on Heating by Electromagnetic Sources, HES-13, Padua (Italy), May 21-24, 213 [2] E. Steingroever, G. Ross. Magnetic measuring techniques, Magnet-Physik Steingroever GmbH, Cologne, Germany, 28. [3] CEDRAT, User guide Flux 12. Volume 2 Physical description, solving & postprocessing, Cedrat, Ref. KF 1 1-12 - EN - 1/15, section 1, January 215.