IDENTIFICATION OF GROUNDWATER POTENTIAL ZONES USING GIS TECHNIQUE IN SOUTH BANGALORE METROPOLITAN REGION OF KARNATAKA, INDIA

Similar documents
Ground Water Potential Mapping in Chinnar Watershed (Koneri Sub Watershed) Using Remote Sensing & GIS

[Penumaka, 7(1): January-March 2017] ISSN Impact Factor

Delineation of groundwater potential zones in Coimbatore district, Tamil Nadu, using Remote sensing and GIS techniques

Morphometric Analysis for Hard Rock Terrain of Upper Ponnaiyar Watershed, Tamilnadu A GIS Approach

EVALUATION OF GROUND WATER POTENTIAL OF NALLATANGAAL ODAI USING REMOTE SENSING AND GIS TECHNIQUES

Sub-watershed prioritization based on potential zones of Kuttiadi river basin, A Geo-Morphometric approach using GIS

Integration of Thematic Maps Through GIS for Identification of Groundwater Potential zones. Amaresh Kr. Singh & S. Ravi Prakash

Geospatial Data Integration For Groundwater Recharge Estimation In Hard Rock Terrain. Authors,

Identification of Groundwater Recharge Potential Zones for a Watershed Using Remote Sensing and GIS

Evaluation of groundwater potential zones in Krishnagiri District, Tamil Nadu using MIF Technique

CHAPTER 9 SUMMARY AND CONCLUSIONS

Mapping the Groundwater Potential Zone for Bengaluru Urban District

Potential Groundwater Accumulations Assessment in Drought Prone Area using Remote Sensing and GIS Technology

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 3, No 1, 2012

Surface Processes Focus on Mass Wasting (Chapter 10)

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 3, 2010

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

GROUNDWATER CONFIGURATION IN THE UPPER CATCHMENT OF MEGHADRIGEDDA RESERVOIR, VISAKHAPATNAM DISTRICT, ANDHRA PRADESH

MAPPING OF HGM ENVIRONMENT USING SATELITE DATA A case study of Block Datia, Madhya Pradesh (INDIA)

A STUDY ON MORPHOMETRIC PARAMETER OF A WATERSHED FOR SUSTAINABLE WATER CONSERVATION

Journal of Environmental Research And Development Vol. 5 No. 1, July-September 2010

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

REMOTE SENSING AND GIS BASED APPROACH FOR DELINEATION OF ARTIFICIAL RECHARGE SITES IN PALANI TALUK, DINDIGUL DISTRICT, TAMILNADU, INDIA

Assessment of groundwater potential zones in Allahabad district by using remote sensing & GIS techniques

About the Author: Abstract:

DEMARCATION OF GROUNDWATER PROSPECT ZONES THROUGH RS AND GIS TECHNIQUES IN A BASIN

APPLICATION OF REMOTE SENSING AND GIS TECHNIQUES FOR GROUNDWATER RECHARGE SITE SELECTION IN HARD ROCK AREAS A CASE STUDY FROM SOUTH INDIA

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 4, 2011

MORPHOMETRIC ANALYSIS OF LAKSHMANTIRTHA RIVER BASIN AROUND HUNSUR TALUK, MYSORE, KARNATAKA, (INDIA)

CHAPTER 2 GEOLOGY AND GEOMORPHOLOGY

Gis Based On Morphometric Analysis of Part of Manair River Basin in Karimnagar District, Telangana State.

REMOTE SENSING AND GIS APPLICATIONS FOR TERRAIN EVALUATION AND LAND RESOURCES ASSESSMENT IN YERALA RIVER BASIN, WESTERN MAHARASHTRA, INDIA

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 2, No 1, 2011

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 3.114, ISSN: , Volume 5, Issue 3, April 2017

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 1, 2010

Integrated GIS based approach in mapping the groundwater potential zones in Kota Kinabalu, Sabah, Malaysia

Delineation of Groundwater Potential Zones in the Mudugunduru Sub Watershed, Mandya District, Using Remote Sensing and GIS

Delineation of Groundwater Recharge Zones in West Jaintia Hills District, Meghalaya, India

Block Level Micro Watershed Prioritization Based on Morphometric and Runoff Parameters

International Journal of Remote Sensing & Geoscience (IJRSG) ASTER DEM BASED GEOLOGICAL AND GEOMOR-

ESTIMATION OF MORPHOMETRIC PARAMETERS AND RUNOFF USING RS & GIS TECHNIQUES

Remote Sensing and GIS Applications for Hilly Watersheds SUBASHISA DUTTA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI

[Ahirwar*, 4.(11): November, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Delineation of Groundwater Potential Zone on Brantas Groundwater Basin

MODULE 7 LECTURE NOTES 5 DRAINAGE PATTERN AND CATCHMENT AREA DELINEATION

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

Prioritization of sub-watersheds in semi arid region, Western Maharashtra, India using Geographical Information System

REMOTE SENSING AND GIS TECHNIQUES FOR IDENTIFICATION OF ARTIFICIAL RECHARGE SITES IN KALLAR WATERSHED, TAMIL NADU, INDIA

Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70. Periods Topic Subject Matter Geographical Skills

GIS Based Delineation of Micro-watershed and its Applications: Mahendergarh District, Haryana

Australian Journal of Basic and Applied Sciences. Application of Remote Sensing and GIS for the Assessment of Groundwater Quality

Chapter- Three GEOMORPHOLOGY AND RAINFALL PATTERN

CHAPTER 4 METHODOLOGY

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 3, No 1, 2012

13 Watershed Delineation & Modeling

About the Author: E mail ID: Contact: proceedings. Page 1 of 8

Springshed Springshed Management Training Curriculum

INTERNATIONAL JOURNAL OF APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY


INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 2, No 1, 2011

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

A strategy for drought mitigation using groundwater: a case study in Kolar district, Karnataka State, India

Delineation of ground water potential zones in Dhanbad district, Jharkhand, using Remote Sensing and GIS Techniques

Application of Remote Sensing and GIS for groundwater recharge zone in and around Gola Block, Ramgargh district, Jharkhand, India

Chapter IV MORPHOMETRIC ANALYSIS AND STREAM NETWORK CHARACTERISTICS IN GADAG DISTRICT

ASTER DEM Based Studies for Geological and Geomorphological Investigation in and around Gola block, Ramgarh District, Jharkhand, India

Figure 2.1: Constituent Area

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 3, No 3, 2013

Assessing Vulnerability to Soil Erosion of a Watershed of Tons River Basin in Madhya Pradesh using Remote Sensing and GIS

LANDSLIDE SUSCEPTIBILITY MAPPING USING INFO VALUE METHOD BASED ON GIS

Groundwater Potential Mapping in a Part of Malaprabha River Basin using Remote Sensing Data and Geographic Information System (GIS)

Application of Geographical Information System (GIS) tools in watershed analysis

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 1, No 1, 2010

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Hydrogeomorphological mapping upto Cadastral level, by using High resolution satellite Data in..

Basin characteristics

Characterization of water level response to rainfall in Narava Micro Watershed, Andhra Pradesh, India

INTEGRATION OF THEMATIC MAPS FOR IDENTIFICATION OF GROUND WATER EXPLORATION ZONES IN THE PARTS OF BHIND, MADHYA PRADESH (INDIA)

Evaluation of Subsurface Formation of Pabna District, Bangladesh

MORPHOMETRIC ANALYSIS OF ADYAR WATERSHED

Application of Remote Sensing and Geo-Electrical Method for Groundwater Exploration in Khor Al Alabyad, North Kordofan State, Sudan

Geomorphological Analysis of Aralamallige Watershed, Bangalore Using Remote Sensing and GIS Approach

Morphometric Estimation of Parameters of Uttar Mand River Basin, Satara District, Maharashtra, India.

Research Journal of Recent Sciences ISSN Vol. 1(9), 59-66, September (2012)

GEOMORPHOLOGY APPROACH IN LANDSLIDE VULNERABILITY, TANJUNG PALAS TENGAH, EAST KALIMANTAN, INDONESIA

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 6, No 3, 2016

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Groundwater Potential Zone Mapping Approach in Chandraprabha Basin U.P Using Remote Sensing & GIS Technology

Evaluation of Morphometric parameters of drainage networks derived from Topographic Map and Digital Elevation Model using Remote Sensing and GIS

Effect of land use/land cover changes on runoff in a river basin: a case study

International Journal of Advance Engineering and Research Development

UGRC 144 Science and Technology in Our Lives/Geohazards

MORPHOLOGICAL PARAMETER ESTIMATION DERIVED FROM TOPOSHEETS AND ASTER DEM A STUDY ON WATERSHEDS OF DAKSHINA PINAKINI RIVER BASIN IN KARNATAKA, INDIA

GOVERNMENT OF NEPAL MINISTRY OF IRRIGATION GROUND WATER RESOURCES DEVELOPMENT BOARD BABARMAHAL, KATHMANDU, NEPAL

CHAPTER V WATERSHED CHARACTERIZATION USING GIS

Transcription:

IDENTIFICATION OF GROUNDWATER POTENTIAL ZONES USING GIS TECHNIQUE IN SOUTH BANGALORE METROPOLITAN REGION OF KARNATAKA, INDIA *Krishna Murthy B.N. and Renuka Prasad T.J. Department of Geology, Bangalore University, Bangalore, Karnataka, INDIA *Author for Correspondence ABSTRACT Ground water is the most Cherished natural resources which support all environmental issues. The present work carried out to assess and identification of groundwater potential zones using Geographic Information System (GIS). Different Thematic layers like Geology, Geomorphology, Land use land cover, Slope, Soil, Drainage Density and Lineament density are generated and used in the integration to identify the ground water potential zones. Weight and Rank were assigned according to their influence based on infiltration of ground water. Ground water potential zone are classified in to five Groups like Excellent, Good, Moderate, Poor and Very Poor. The present study reveals that there exists Good zone 33%, Excellent 27%, Moderate and Poor 18% and Very Poor 4% in the study area. In the overall area 70% has good potential zone and 30% of the area has poor to very poor zone are observed. Keywords: Ground Water Potential, Thematic Layers, Arc GIS, Weighted Overlay INTRODUCTION Groundwater is a form of water occupying all the voids with in a geological stratum. Water bearing formations of the earth s crust act as conduits for transmission and as reservoirs for storing water. The groundwater occurrence in a geological formation and the scope for it exploitation primarily depends on the formation of porosity. High relief and steep slopes impart higher runoff, while topographical depressions increase infiltration. An area of high drainage density also increases surface runoff compared to allow drainage density area. Surface water bodies like rivers, ponds, etc., can act as recharge zones (Murugesan et al., 2012). The groundwater occurrence in a geological formation and the scope for its exploitation primarily depends on the formation of porosity. High relief and steep slopes impart higher runoff, while topographical depressions increase infiltrations. An area of high drainage density also increases surface runoff compared to a low drainage density area. Surface water bodies like rivers, ponds, etc., can act as recharge zones, enhancing the groundwater potential in the neighborhood (Karanth, 1987; Hrkal, 1992, 2001; Sujatha and Rajeswara, 2003; Rai et al., 2005; Subramani et al., 2005; Mathes and Rasmussen, 2006; El-Hames et al., 2011; Rekha et al., 2011; Anithamary et al., 2012; Magesh et al., 2012; Venkatramanan et al., 2012). The present study area, which is a hard rock terrain, having undulating topography though get sufficient rainfall, suffers from water scarcity for domestic, agricultural, and industrial purposes due to limited nature of aquifers (inadequate weathered and fissured zones). Also, sometimes presence of basic and meta-basic dykes and the quartz reefs in the area have acted as barriers for the flow of water (Singh et al., 1997) Groundwater is attracting an ever increasing interest due to scarcity of good quality water and growing need for domestic, agricultural and industrial uses. It has become crucial not only for targeting the groundwater potential zones, but also monitoring and conserving this important resource (CGWB, 1985). MATERIAL AND METHODS Study Area The study area is situated in the Southern part of Karnataka and lies between the Longitude 77 3'57.66'' E to 77 50'39.85'' E and Latitude 13 7'1.33''N to 12 14'23.53''N. Survey Of India (SOI) Toposheets numbers (57G/4,8,12,16,57H,1,2,3,5,6,7,9,10,11 and 13). The study area covers about 4,125Sqkms of Bangalore and Ramanagara district. Gneissic and Granite Rock are dominantly covers in the study area. Copyright 2014 Centre for Info Bio Technology (CIBTech) 9

The Catchment of South Bangalore Metropolitan region Comprises parts of Cauvery, South Pennar and Palar basins. DoddaguliHalla, DoddaHalla, Rayatmala Hole, Antaragange Hole, Kutle hole, Suvarnamukhi River, Vrishabavati River, Kanva Hole, Arkavati River, Cauvery River, ChikkatoreHalla, Shimsha River, Edakolada Halla and Dakshina Pinakini River, these are the watershed cover in the study area (Figure 1). Figure 1: Location Map Methodology The base and drainage maps have been prepared using 1:50000 SOI topographical sheets. Drainage, Drainage Density and slope maps have been derived using topo sheet in GIS environments. Geology, Soil and Lineament maps of Geological Survey of India have been prepared using GIS. Remote Sensing Technique has been used to obtain Geomorphology, Land use land cover. All the thematic layers are integrated by intersect method using Arc GIS to identify the ground water potential zones. The details of methodology are shown in the flow chart. Copyright 2014 Centre for Info Bio Technology (CIBTech) 10

Lineament Density Lineaments area straight line is elements visible at the earth s surface as a significant lines of landscape (Hobbs, 1904). These are primarily are function of discontinuities on the earth surface caused by geological or geomorphic processes (Clark and Wilson, 1994). Geological features that give to lineaments include faults, shear zones, fractures, dykes and veins as wells bedding planes and Stratigraphic contacts. Geomorphic features, which appear as lineaments on the maps, aerial photographs and satellite images include streams line are valley sand ridgelines. In the present study area lineament area digitized form Geological survey of India maps. The majority of area covers dendritic drainage pattern, Major and Minor lineaments are observed, Very high Lineament density observed around 81% of the study area (Table 1). Its indicate that excellent ground water potential zone Figure (2). Table 1: Lineament Density details Lineament Density Area in Sq.Km Very High 3322.68 High 115.24 Moderate 468.11 Low 173.89 Very Low 41.99 Grand Total 4121.91 Copyright 2014 Centre for Info Bio Technology (CIBTech) 11

Figure 2: Lineament Density Map Drainage Density Drainage density is defined as the total length of streams of all orders per drainage area. Density factor is related to climate, type of rocks, relief, infiltration capacity, vegetation cover, surface roughness has no significant correlation with drainage density. The drainage density indicates the closeness of spacing of channels (Horton, 1932). According to Horton, Drainage Density is defined ratio of total length of all stream segments in a given drainage basin to the total area of that basin. It is expressed by a formula: DD= L/A Where, L = Total length, A =Total area. The drainage density is low in Shimsha River, Vrishabavati River & Antaragange Hole. High values observed in Kanva Hole Dodda Halla, Doddaguli Halla & Suvarnamukhi River Figure (3). In the study area, drainage density ranges between 1.942 to 136.57 Sq.Km (Table 2) (Krishna and Renuka, 2014). Table 2: Density Density details Drainage Density Area in Sq.Km 1.94-4.7 693.488 4.72-8.67 2149.292 8.67-136.57 1282.945 Copyright 2014 Centre for Info Bio Technology (CIBTech) 12

Figure 3: Drainage Density Map E. Geology Pitchamuthu (1969) made the area geologically famous by proposing Charnockitinsation of the Gneisses, the rock types exposed in the area belong to Sargur group, Peninsular gneissic complex (PGC), charnockits, Clospetgranite, basic and younger intrusives. Charnokite group is represented by Charnokite Sargur group comprises ultra mafic rocks, Amphibolite quartzite; banded magnetite quartzite occurring has small bands and lenses with in Migmatites and Gneisses. The PGC is the dominate unit and covers about one thirds of the area which includes granites, Gneisses and migmatietes occurs of the east and west of Closepet granite. The intrusive body trending nearly N-S within the Gneisses, it comprises grey and pink granite. The Closepet granite contains encloses of Migmatites, Gneisses, Quarzite and Amphibolite it is represented of variable composition. The basic intrusive are represented Dolerite, Gabbro occasionally Norite and Pyroxenite. Dolerite is the dominant basic dyke they occur in the prominent trends is N-S & E- W to ESE-WSW. Gneisses and migmatites of PGC (Archaean) which range from 2900 to 2500 million years closepet granite is intruded into the older rocks during the late Archaean period about 2500 million years. The lower Proterzonic basic dyke are dated 2400 million years and upper Proterozic dykes as felsite, felsite porphyry and lamprophyre are the youngest intrusive and dated at 800 million years. In the study area laterite formation in Cainozoic age, quartz vein, felsites, felsites porphyry, Lamphrophyre and Potassic rock, these are the younger intrusive formation in upper Proterozoic age, Basic dyke are the basic intrusive. Pink and Grey granite are the Closepet granite its formation under Lower Proterozoic in age. Gneiss / Migmatite / Granite this are Peninsular Gneissic Complex, Quartzite, Amphibolite / Homblende schist formation are Sargur group of schist belt and Charnockite formation in Charnockite group Rock, these group under the age of Archaean. In the study area Gneiss (68%), Pink and Grey Granite (28%) rocks are dominantly spread in the study area (Table 3). Gneiss and Granite rock are more suitable for of Ground water accumulation Figure (4). Copyright 2014 Centre for Info Bio Technology (CIBTech) 13

Table 3: Geology details Geology Area in Sq.Km Quartzite 9.18 Gneiss 2812.691 Granite 47.27 Pink & Grey Granite 1131.971 Amphibolite / Homblende schist 2.217 Laterite /Migmatite/Falsite/Ultra Potassic Rock 9.944 Charnockite 114.683 Grand Total 4127.956 Figure 4: Geology Map A. Geomorphology Geomorphological area can be divided in to uplands plateaus and pediplanes. The region part of the area in covered by denudational plateaus and pediment pediplanes complex covered by NNE- SSW trending hills of the intermittent plains, isolated granitic hills constitute hog-backs. Laterite covered flat topped hills in the northeastern part of plateaus. Bangalore situated on N-S trending highland with an average altitude of 930 meter above Mean Sea Level. It forms between the River Arkavatian in the west, Pinakini in the east, the ground water occurrence movement of recharge aquifers are controlled by the degree of weathered and fractured, as these hard cry stalling back primary porosity of the weathered. The fractured granite and gneisses constitute principal aquifers in the area, the chief source of recharges in seasonal rainfall and seepage from river, reservoirs and tanks. The Various Types of Geomorphological features were found pediments and Pediplain, Valley flat, Hills valleys Denudational Plateaus and Denudational Hills. Hills / Valleys (31%), Pediplain and Pediments (28%), Denudational Plateaus (28%) dominantly spreads in the study area (Table 4). Pediplain and pediments are flat surface with good weathered profile covering thick vegetation. These types of thick vegetation are very helpful and acts as important role for ground water infiltration Figure (5). Copyright 2014 Centre for Info Bio Technology (CIBTech) 14

Table 4: Geomorphology Classes details Geomorphology Area in Sq.Km Pediments/Pediplain 1169.42 Valley Flat 231.225 Hills Valleys 1285.258 Denudational Plateaus 1150.331 Denudational Hills 288.637 Figure 5: Geomorphological Map B. Land Use Land Cover (LuLc): Land use land cover features are dominant in the development of ground water resources, it control hydrological activity like infiltration Evapotranspiration and Runoff. Agricultural lands are reducing and discharge thereby increase in the infiltration. In the forest area infiltration is more and run off will be less. Agricultural Land (59%), water bodies / Wetlands (16%), Forest (15%) and Built-up land (10%) are showing the percentage of area covering in the study area (Table 5) Figure (6). Table 5: Land use Land Cover details LuLc Area in Sq.Km Agricultural Land 2448.8 Forest 617.41 Grassland/Grazing land 7.038 water bodies / Wetlands/others 653.017 wastelands/build up land 398.507 Copyright 2014 Centre for Info Bio Technology (CIBTech) 15

Grand total 4124.772 Figure 6: Land Use Land Cover Map C. Slope Slope may be defined has the concept of the terrain parameters which is explained by horizontal spacing of the contour in the study area, there are five groups depending upon terrain, the lower slope values indicates the flatter terrain (Gently slope between 0-5 % ) and higher slope values (steeper slope between 15-35%). Slope is measured by identification of maximum rate of changing value for each cell to neighboring cells vise percentage nearly too very gently slope. In the gently slope area the surface runoff less and rain water to percolate and consider as recharge and good ground water potential zone. Whereas steeper slop facilitate high runoff and less infiltration. Nearly too very gently slope 0-5 (73%), gently to Moderate Slope 5-10 (10%), Strong Slope 10-15(9%) covers in the study area (Table 6) Figure (7). Table 6: Slope details Slope % Area in Sq.Km 0-5 3003.693 5-10 432.017 10-15 349.652 15-35 163.319 >35 176.098 Copyright 2014 Centre for Info Bio Technology (CIBTech) 16

Grand Total 4124.779 Figure 7: Slope Map D. Soil Hydraulic properties of soil play an important role in movement of soil moisture form ground surface to water table through unsaturated zone. Different types of soil layers are present in the study area they are Red sandy soil, Red Loamy soil and Lateritic soil. For the ground water movements Red sandy and red loamy soil is very helpful. Red Sandy Soil (50%), Red Loamy Soil (20%) and Laterite Soil (30%) cover in the area (Table 7) Figure (8). Table 7: Soil and Area Soil Area in Sq.Km Red Sandy 2060.575 Red Loamy 836.443 Laterite 1228.192 Grand Total 4125.21 Copyright 2014 Centre for Info Bio Technology (CIBTech) 17

E. Ground Water Potential Zone Table 8: Rank and weight for different Thematic Maps Sl.No Thematic Layers Classes Rank Weight age 1 Geomorphology Pediments/Padiplain 5 25 valley Flat 4 Hills Valleys 3 Denudational Plateaus 2 Denudational Hills 1 2 Slope % 0-5 5 20 5-10 4 10-15 3 15-35 2 >35 1 3 LULC Agricultural Land 5 15 Forest 4 Grassland/Grazing land 3 water bodies / Wetlands/others 2 wastelands/build up land 1 4 Structural <16 5 15 16-17 4 17-18 3 18-19 2 >20 1 5 Soil Red Sandy 5 10 Red Loamy 4 Laterite 3 6 Drainage density 1.94-4.7 5 10 4.72-8.67 4 8.67-136.57 3 7 Geology Quartzite 5 5 Gneiss 5 Granite 4 Pink & Grey Granite 4 Amphibolite/Homblende schist 3 Laterite /Migmatite/Falsite/Ultra Potassic Rock 2 Copyright 2014 Centre for Info Bio Technology (CIBTech) 18

Charnockite 1 Figure 8: Soil Map Table 8: Ground water Potential zone and Pie chart details: Ground water Potential zone Area Sq.Km Excellent 1128.714 Good 1362.319 Moderate 718.033 Poor 756.8026 Very Poor 156.531 Grand Total 4122.3996 Copyright 2014 Centre for Info Bio Technology (CIBTech) 19

Figure 9: Groundwater Potential Zone Map The ground water potential zones are obtained by overlaying all the thematic maps in terms of weighted overlay method using the spatial analysis tool in Arc GIS 10.1. During the weighted overlay analysis, the Copyright 2014 Centre for Info Bio Technology (CIBTech) 20

ranks have been given for each individual parameter of the each thematic map and the weight is assigned according to each individual parameter of each thematic map and the weight is assigned according to the influence of the different parameters. The weights and rank have been taken considering the works carried out by researchers (Krishnamurthy et al., 1996, Saraf and Chowdhary, 1998) to the influence of the different parameters. The weights and rank have been taken considering the works carried out by researchers such as all the thematic maps are converted in to raster format and superimposed by weighted overlay method (rank and weight wise thematic maps were integrated with one another through GIS ArcInfo grid environment). For assigning the weight, the slope and geomorphology were assigned higher weight, where as the lineament density and drainage density were assigned lower weight. After assigning weights to different parameters, individual ranks are given for sub variable. In this process, the GIS layer of lineament density, geomorphology, slope and drainage density were analyzed carefully and ranks are assigned to their sub variable (Butler et al., 2002, Asadietal, 2007, Yammani, 2007). Application in Ground water Studies, Identification of ground water potential zones in Cauvery sub water shed, Karnataka, India. Thematic layers of Geology, Geomorphology, and Land use land cover, Slope, Soil, Drainage Density and Lineament density. These standard thematic layers are proposed to determine the ground water potential zone Using RS and GIS Technique. These thematic layers integrated with one layers to another layer by overlay method in Arc GIS. Suitable weights and ranks for each class. Weight and Rank are given based on infiltration of ground water. Ground water potential zone are classified in to five Groups like Excellent, Good, Moderate, Poor and Very Poor. In the ground water potential zone map. In the present study area for ground water potential zone grouped in to five classes those are Good 33%, Excellent 27%, Moderate and Poor 18%, Very Poor 4%. In the overall area 70 % good potential zone and 30 % of the area poor to very poor zone are observed (Table 8) Figure (9). Conclusion Geographical information system and remote sensing applications are power full tools and cost effective method for identification of ground potential zone. In the study area we assigned rank and Weightage for individual layers of features depending upon different grade of infiltration. Integration method are used for the seven layers like Soil, Slope, Geology, Geomorphology, Land use Land Cover, Drainage density and Lineament density, these thematic layers are very help full to identify the ground water potential zone. Major and Minor lineaments are observed in the study area. Very high Lineament density observed around 81% of the study area, its indicate that excellent ground water potential zone in the area. The drainage density has been calculated and ranges between 1.942 to 136.57 Sq,Km. Gneiss (68%), Pink and Gray Granit (28%) rocks are dominantly spread in the area. Gneiss and Granite rock are more suitable for identification of Ground water potential zone. Pediplain and Pediments (28%), Denudational Plateaus (28%) dominantly spreads. Agricultural lands are reduce discharge thereby increases the infiltration of ground water. In the forest area infiltration more and run off will be less. In the gently slope area (0-5) degree, the surface runoff less and rain water to percolate and consider for good ground water potential zone. Whereas steeper slop area (15-35) degree, facilitate high runoff and less infiltration. For the ground water movements Red sandy and red loamy soil is very helpful to identify the ground water potential zone. Identification of ground water potential zones in Cauvery sub water shed, Thematic layers of Geology, Geomorphology, Land use land cover, Slope, Soil, Drainage and Lineament density. These standard thematic layers are proposed to determine and identify the ground water potential zone using Remote Sensing and GIS Technique. These thematic layers integrated with one layers to another layer by overlay method in Arc GIS. Suitable weights and ranks for each class are given based on infiltration of ground water. In the present study area for ground water potential zone grouped in to five classes they are Good 33%, Excellent 27%, Moderate & Poor 18% and Very Poor 4%. In the overall area 70% has good potential zone and 30% of the area has poor to very poor zone are observed by overlay method to delineate the groundwater potential zones. Ground water potential zone are classified in to five groups they are Excellent, Good, Moderate, Poor and Very Poor. The final Groundwater Potential zone map (figure 9), Red colour indicate Very Poor Zone and Green colour Indicate excellent zone in the study Copyright 2014 Centre for Info Bio Technology (CIBTech) 21

area. Moderate to poor zones in the study area has to be improved. The ground water potential information will be useful in hard rock terrain for ground water recharge in different technique they are Surface spread techniques like Flooding; Ditch and furrows; Recharge basin. Run-off conservation structures like Gully plugs; Bench terracing; Contour bund; Nala bund; Percolation tank ; Individual well recharge, Stream modification; Surface irrigation. Sub-surface techniques are Injection wells; Gravity head recharge wells; Aquifer Storage and Retrieval (ASR); Soil Aquifer Treatment (SAT); Indirect methods are Induced Recharge Pumping wells; Collector wells; Infiltration gallery, Aquifer Modification like Bore blasting; Hydrofracturing and Combination methods like Groundwater conservation, Structures, Groundwater dams, underground bandharas; Fracture sealing cementation techniques (FSC). Hence the present approach was built with logical conditions; this approach can be successfully used elsewhere with appropriate modifications. Thus, the above study has clearly demonstrated the capabilities of remote sensing technique and GIS in demarcation of the different ground water potential zones (Figure 9). REFERENCES Agarwal CS and Garg PK (2000). Textbook on Remote Sensing In Natural Resources Monitoring and Management (Wheeler Publishing) 213. Bahuguna IM, Nayak S, Tamilarsan V and Moses J (2003). Groundwater prospective zones in Basaltic terrain using remote sensing. Journal Indian Society of Remote Sensing 31(2) 107 118. Hobbs WH (1904). Liniments of the Atlantic boarder region. Geological Society of America Bulletin 15 483-506 Horton RE (1945). Erosional development of streams and their drainage density: hydrophysical approach to quantitative geomorphology. Geological Society of America Bulletin 56 275-370. Krishnamurthy J, Kumar NV, Jayaraman V and Manivel M (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing 17(10) 1867-1884. Krishnamurthy J, Venkatesa KN, Jayaraman V and Manivel M (1996). Anapproach to demarcate groundwater potential zones through remote sensing and geographic information system. International Journal of Remote Sensing 17 1867-1884. Murugesan B, Thirunavukkarasu R, Senapathi V and Balasubramanian G (2012). Application of remote sensing and GIS analysis for groundwater potential zone in kodaikanaltaluka, South India. Earth Science 7(1) 65-75. Nag SK and Ghosh P (2012). Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques, Environmental Earth Sciences, Available: http://www.cibtech.org/submit%20manuscripts%20jgee.htm. Saraf AK and Chaudhary PR (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharges sites. International Journal of Remote Sensing 19(10) 1825-1841. Copyright 2014 Centre for Info Bio Technology (CIBTech) 22