Learning Outcomes: Logistics: Classification System: bold Metamorphic Igneous Sedimentary Sedimentary rock classification schemes.

Similar documents
EPS 50 Lab 4: Sedimentary Rocks

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rock Identification Lab, 60 Points This is a BIG lab! Work carefully and thoroughly

Rock Identification. invisible rhyolite andesite basalt komatiite. visible granite diorite gabbro peridotite

THE ROCK CYCLE & ROCKS. Subtitle

Rocks. Rocks are composed of 1 or more minerals. Rocks are classified based on how they formed (origin). 3 classes of rocks:

NAME: PERIOD: DATE: LAB PARTNERS: LAB #9 ROCK IDENTIFICATION

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

8 th Earth Science Chapter 4 Rocks Name Section 1 The Rock Cycle:

Evolution of the Earth

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

COMPOSITIONAL TERMS: FELSIC : light colored INTERMEDIATE : medium shades MAFIC : dark colored ULTRAMAFIC : rare (composition of the mantle)

Chapter 9 : Rocks and Minerals

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

A. IGNEOUS Rocks formed by cooling and hardening of hot molten rock called magma (within crust or at its surface).

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

Review - Unit 2 - Rocks and Minerals

UNIT 4 SEDIMENTARY ROCKS

Rocks & Minerals. Lesson 1 Properties of Minerals. What is a mineral? What is a mineral?

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

ENVI.2030L Rock Identification

Sedimentary Rocks. All sedimentary rocks begin to form when existing rocks are broken down into sediments Sediments are mainly weathered debris

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Thursday, October 4 th

Sedimentology & Stratigraphy. Thanks to Rob Viens for slides

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc

Version 1 Page 1 Barnard/George/Ward

Sediment. Weathering: mechanical and chemical decomposition and disintegration of rock and minerals at the surface

Chapter 4 Rocks & Igneous Rocks

Name Class Date. Chapter 3 Rocks Chapter Test. Write the letter that best answers the question or completes the statement on the line provided.

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks

TEACHER BACKGROUND KNOWEDGE. Minerals, Rocks and the Rock Cycle

Minerals. What are minerals and how do we classify them?

Prentice Hall EARTH SCIENCE

ROCK IDENTIFICATION LAB

Unit 2 Exam: Rocks & Minerals

Chapter 4: Rocks and Their Transformations

Bowen s Chemical Stability Series

UNIT TOPICS TOPIC 1: MINERALS TOPIC 2: IGNEOUS ROCKS TOPIC 3: SEDIMENTARY ROCKS TOPIC 4: METAMORPHIC ROCKS TOPIC 5: THE ROCK CYCLE

FIREPLACE GEOLOGY. Dining Hall

Sedimentary Rocks, our most Valuable Rocks. Or, what you will probably find when you are outdoors exploring.

Smart Figure 2.2: SmartFigures-The_Rock_Cycle

Sedimentary Rocks - are one of the three main rock types

CEE 437 Lecture 10 Rock Classification. Thomas Doe

Geology for Engineers Rocks

Rocks and The Rock Cycle

Sedimentary Rocks. Weathering. Mechanical & Chemical Weathering. Sediments. Lithification. Deposition. Transport. Erosion.

THE FOLLOWING QUESTIONS REFER TO CHAPTER 2 IN YOUR MANUAL

From Atoms to Minerals to Rocks: The building blocks of the Earth

Sedimentary Environments Chapter 8

I m good. Thank you.

2. An electron is the smallest unit of matter that retains the characteristics of an element. a. True

RR#7 - Multiple Choice

Igneous Rocks (Right Side Question)

Page 1. Name:

Earth Science Chapter 6 Rocks

The Rocky Road Game. Sedimentary Rock. Igneous Rock. Start. Metamorphic Rock. Finish. Zone of Transportation. Weathering Way.

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

Which sample best shows the physical properties normally associated with regional metamorphism? (1) A (3) C (2) B (4) D

Rocks and The Rock Cycle

Rocks are made from Minerals

Rocks and the Rock Cycle notes from the textbook, integrated with original contributions

Lecture Outline Wednesday - Friday February 14-16, 2018

ROCK CLASSIFICATION AND IDENTIFICATION

Notes Sedimentary Rocks.notebook. May 10, magma / lava INTERLOCKING. crystal. fine. derived. land. banding. chemically. Foliated Nonfoliated

Rocks. Rock Cycle, Types of Rocks

Figure 1. Random orientation of crystal grains in an igneous rock, granite.

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

1. Base your answer to the following question on The diagram below represents a part of the crystal structure of the mineral kaolinite.

Which rock is shown? A) slate B) dunite C) gneiss D) quartzite

Practice Test Rocks and Minerals. Name. Page 1

Rocks: Materials of the Solid Earth

Oceanography Field Trip One Key

The Nature of Sedimentary Rocks

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

GEOMORPHOLOGY WHAT AM I EXECTED TO LEARN?

Clastic Textures. I. What is the sorting of sample numbers 60, 61, and 62? Answers on last page.

Sediment and sedimentary rocks Sediment

This slide show is intended to help you understand important types of rocks.

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

Lab 3 - Identification of Igneous Rocks

CEE 437 Lecture 11 Rock Classification. Thomas Doe

Elements Minerals Rock

B) color B) Sediment must be compacted and cemented before it can change to sedimentary rock. D) igneous, metamorphic, and sedimentary rocks

A rock is a naturally occurring solid mixture of one or more minerals, or organic matter

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION

Sediments and Sedimentary Rocks

Rocks and Minerals. Tillery, Chapter 19. Solid Earth Materials

Earth s Resources. Earth s Surface

I. Uniformitarianism- James Hutton s 2-part theory states: A. The geologic processes now at work were also active in the past B. The present physical

Lab 4 - Identification of Igneous Rocks

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size.

Emily and Megan. Earth System Science. Elements of Earth by weight. Crust Elements, by weight. Minerals. Made of atoms Earth is mostly iron, by weight

Hafeet mountain. Rocks

GEOL.3250 Geology for Engineers Sedimentary & Metamorphic Rocks

6/20/2018. Lesson 1 (Properties of Minerals) 6 th Grade. Earth s Structure Chapter 2: Minerals and Rocks. density =

Mud Sand Gravel. Clastic Textures

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

Transcription:

Oceanography Marine rocks Learning Outcomes: Classify rocks into one of the three main categories: sedimentary, igneous, and metamorphic. Classify marine sedimentary rocks into a more detailed classification system. Use texture and composition of rock grains as a tool for classifying rocks and sediments Make simple interpretations of rock history based on rock texture and composition Make simple interpretations about the depositional settings of sedimentary rocks and sediments Logistics: The lab has three parts. The first part contains examples of the various rock on which you can practice your observational and interpretive skills. The second part consists of unknown rocks for you to classify. The third part involves figuring out Earth history from sedimentary rocks. Classification System: By the end of the lab, you should be able to classify rock samples that clearly portray the characteristic features of the following ten rock types. The three major rock types are in bold. The rock names you must be able to identify are in italics. Metamorphic Igneous volcanic (fine grained) plutonic (coarse grained) Sedimentary Lithogeneous mudstone (low energy depositional environment: deep sea, lagoon) sandstone (medium energy dune depositional environment: beach, dune) conglomerate (high energy dep. environment: rivers, beaches) Biogenous limestone (coral reef sedimentary environment) deep sea oozes (tests of tiny organisms accumulating on the seafloor) Hydrogenous Evaporites gypsum and halite manganese nodules Sedimentary rock classification schemes. There are two somewhat intertwined classification schemes for sedimentary rocks. The first is discussed extensively in your text and is based on the origin of the individual grains, i.e., how they were formed: lithogenous = land-derived grains; biogenous= biologic-derived grains; hydrogenous=seawaterderived grains The second is based on the size of the grains and relates these characteristics to the energy of the depositional environment. fine grained = low energy; medium grains = medium energy; course grained = high energy

Key for classifying rocks It is difficult to develop an all-encompassing key for all rocks that is doable in a single two-hour lab period. Thus, there are many exceptions to the key below, but it should work for the rocks I d like you to recognize in this class. Use this key to see how the examples in Part I fit into the general scheme and to identify the unknowns in Part II. Characteristics Rock type 1) crystalline layered fine or coarse grained metamorphic 2) crystalline non-layered course grained igneous-plutonic 3) crystalline non-layered fine grained or glassy igneous -volcanic contains phenocrysts 4) crystalline black crust or nodules fine grained hydrogenous sedimentary manganese 5) crystalline white translucent crystals fine or course grained hydrogenous sedimentary gypsum or halite 6) noncrystalline layered,* made up of bits and pieces of other rocks gravel sized grains lithogenous; conglomerate 7) noncrystalline layered,*made up of bits and pieces of other rocks sand-sized grains lithogenous; sandstone 8) noncrystalline layered,*made up of bits and pieces of clay clay-sized grains lithogenous; shale or mudstone 9) noncrystalline layered* microscopic grains but with fossils biogenous; limestone 10) noncrystalline layered*, chert is hard and has rounded fractures microscopic grains biogenous; deep-sea oozes *Sometimes our hand samples are too small to see the layering. The layering of these samples would be more obvious if we could see them at outcrop scale. Part I. Examples of marine rock types. Rocks are scattered about the room and keyed to the following numbers. Look at the rocks in any order. Do not all crowd around the same rocks at once. I will not grade answers to the questions in this Part I. The questions are only designed to guide you to see what I see in the rocks. 1. Metamorphic rocks These rocks are all crystalline and layered. Flat crystalline minerals like the micas form the layering in these rocks. Use the magnifying glass to see them. Sample PF-1 is a metamorphic rock from Ben Lomond Mountain in Santa Cruz County. Note the difference between the orangish weathered surface of the rock, and the fresh material inside the rock. The small black grains are a mineral called biotite that is part of the mica family, are very common in metamorphic rock, and give the rock its layered appearance. Wet the rock to see the layering more clearly. Sample L. Its layered, crystalline nature identifies it as a metamorphic rock. Note the folds in sample L. They are further evidence for deformation at high pressures. The minerals present in this rock are clearly different than those in PF-1. Metamorphic mineral assemblages depend on two things: the composition of the original rock, and the specific pressures and temperatures at which

metamorphism took place. This rock was probably once an ocean-floor basalt that was subjected to the high pressures of a subduction zone. The flat rocks--one green and the other black--are slate, a metamophosed mudstone. You can see a slight sheen on their surfaces as you turn them in the light. This is from microscopic mica or chlorite grains that are metamorphic in origin. This sheen does not occur in mudstone or shale. 2. Igneous--Plutonic. These coarse grained, crystalline rocks are all variations of granite. Note the course grain size and lack of layering in these rocks. The largest sample contains an inclusion of darker colored, finer grained material. This dark material represents an additional bleb of magma that entered the magma chamber as the lighter colored material cooled. 3a. Igneous Volcanic --Siliceous. Siliceous volcanic rocks typify continental regions. Remember SiO2 content is one of the things that differentiates continental and oceanic volcanic rocks. In all samples but the black obsidian (obs-1) you can see little tiny crystals called phenocrysts (look for these; use the magnifying glass!), which are one of the most important identifying characteristic of volcanic rocks. These crystals were present in the magma before it erupted. After eruption, the rest of the lava cooled very quickly, leaving microscopic crystals between the easily visible phenocrysts. The black obsidian (obs-1) apparently had no crystals growing in it before eruption. The reddish obsidian (obs-2) does contain phenocrysts. What color are they? The pink rocks (volc-1 and EC 24)) are rhyolites. The only difference between these rocks and the obsidian is the lack of a glassy texture. The extremely vesicular (lots of air bubbles) sample (pum-1) is a pumice. It is so light that it floats on water. It erupted just as gas was being exsolved form the lava and solidified before those gas bubbles could escape. It is like the froth on a root beer. 3b. Igneous Volcanic --Mafic. Both of these rocks are mafic (lots of magnesium and iron; about 50% SiO2) volcanic rocks called basalt. They typify the oceanic regions, but can erupt on land too. Sample R1-4 shows the dark color typical of these rocks. It was collected in the Columbia River Basalt field in Washington State. Note its fine grained crystallinity and dark color. It does contain some phenocrysts; can you find them? Sample pillow-1 is part of a pillow collected at a mid-ocean ridge. This rock, however, has been metamorphosed somewhat. You can still see what used to be the glassy rim on along the outside of the pillow. The inside contains air bubbles that are now filled with a whitish mineral, probably calcite. Rocks with pillow shapes were all formed under water. 4. Sedimentary Hydrogenous Manganese. The black crust on sample (105-5-1) is manganese, an element that precipitates out of seawater very slowly at the bottom of the ocean. What was the orientation of this rock on the sea floor? This particular rock was dredged from a volcanic region in the western Pacific. You can see individual pieces of volcanic rock immersed in a matrix of fine-grained mud. Deposited on the mud and volcanic fragments is the manganese. Thus, part of this rock could be considered a lithogeneous sedimentary rock with large angular grains. 5. Sedimentary Hydrogenous Gypsum and Halite Gypsum and halite precipitate from salt water as it evaporates. Halite has the composition of common table salt: NaCl, and is the last mineral to form as seawater evaporates. A generation of Earth Science students has tasted the

saltiness of this particular sample. You can too, if you want to share the experience. Gypsum and halite are examples of a class of rocks called evaporites. 6. Sedimentary -- Lithogenous -- conglomerate. Made up of bits and pieces of other rocks, conglomerates have a grain size larger than sand. They were deposited in areas of high energy like rivers, beaches with big waves, or submarine canyons. In sample 2., the grains are quite angular, indicating that they were not transported very far. Round grains indicate repeated pounding by rivers or surf. These grains are not too far from their source. Can you find the biggest grain? The shell and pebble conglomerate (broken shells and dark pebbles) must have been deposited somewhere near a beach. The shells were transported to the depositional environment because they are all broken up. Sample 10 has several grains that are slightly larger than sand grains. This rock is on the borderline between conglomerate and coarse sandstone. 7. Sedimentary -- Lithogenous -- sandstone. here are several varieties of sandstone that represent either beach or dune deposits. One of the samples has fossil clams in it, representing some of the lifeforms that live in a beach environment. The red color is related to the oxidation of iron carried through the sands within fluids as the rock was being formed. How would you tell these rocks from a fine-grained volcanic rock? 8. Sedimentary -- Lithogenous -- mudstone. The most distinguishing characteristic of mudstone is its very fine grain size (can t see individual grains), while distinct layering is still present. They are not glassy, and do not have a crystalline feel. 9. Sedimentary Biogenous--limestone These limestone samples have many fossils -- that s the biogenous part. The fossils include portions of coral, shells, and the hard parts of other sea organisms. Some of the rocks appear to be comprised almost entirely of shells. Other samples have trilobites. Trilobites are extinct creatures that lived in muddy areas on the bottom of the sea about 500 million years ago, a very long time ago indeed. 10. Sedimentary -- Biogenous siliceous. Chert is our best example of biogenous siliceous ooze. Although you can t see them today, the hard parts of small siliceous organisms called radiolarians comprise this rock. Radiolarians are similar to diatoms in that their hard parts, or tests, are made of silica. The white rock that feels like chalk is just that: chalk. It is composed of millions of microscopic creatures called diatoms. These animals die and fall to the bottom of the sea. Their shells remain and create this chalky rock. 11. Sedimentary Biogenous/Lithogenous Diatomaceous Mudstone. This rock is included, not because it is a good example of any of the primary types of oceanic sediments, but because it is common locally. It is called the Monterey Formation, which we have seen on our field trip during the first lab. This rock is partially biogenic (it is full of microscopic diatoms) and partially lithogenous (it has clay sized particles as well). This sample illustrates the idea that the differences between the various types of rocks and sediments are gradational. There are not clear and distinct differences between Some of the samples have clams that have bored themselves a home right in the rock. These are called boring clams. The clams made their home here after the sediment had lithified and turned into a sedimentary rock.

Part II. Identification of unknowns. Get a suite of unknowns from the instructor. Use the observations you ve already made and the table on page 2 to key out the names of the rocks. Please work in groups because there are not quite enough samples to go around to everybody. Fill in this table and use a magnifying glass. Sample number 1 Crystalline? Phenocrysts? HCl reaction? Layered? Bits and pieces of other rocks? Grain size? Rock name 2 3 4 5 6 7

B. On a separate sheet of paper, please use your best essay writing skills to a) describe the sedimentary rock at the front of the room using your own observations and the concepts included in this lab, and b) interpret where the sediments that comprise this sedimentary rock may have been deposited. Support your interpretation with your observations. Use complete sentences, wellconstructed paragraphs, and your best writing skills. Ask a partner to read your work and revise your essay based on their comments. Staple your final draft to this lab and hand it in. Your partner should answer the following questions about your paper: Is the paper free of 1 st or 2 nd person writing? Do the interpretations pass the because test? Are the observations and interpretations clearly Is the interpretation supported by evidence? separated? Is good grammar used throughout the essay? Is the rock described completely? Grain size? Grain shape?

Part III: Interpretation of sequences of sediments or sedimentary rock Use all the diagrams to answer the following questions. If you need to, review in your text book or your notes some of the factors that control the location of deep sea sediments. a. Why is there a thicker section of sediments at E than at A? b. Why is Calcareous siliceous ooze sandwiched between layers of deep-sea clay? c. Why does volcanogenic sediment only occur near Japan? d. Please explain, in a few sentences, the history of the sediment sequence at drill site E.