UNIVERSITI PUTRA MALAYSIA. EFFECT OF MAGNETIC NANOPARTICLE ADDITION ON THE SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O

Similar documents
ANOLYTE SOLUTION GENERATED FROM ELECTROCHEMICAL ACTIVATION PROCESS FOR THE TREATMENT OF PHENOL

UNIVERSITI PUTRA MALAYSIA

MUSTAFA MUSA ALI DIHOM

UNIVERSITI PUTRA MALAYSIA GENERATING MUTUALLY UNBIASED BASES AND DISCRETE WIGNER FUNCTION FOR THREE-QUBIT SYSTEM

UNIVERSITI PUTRA MALAYSIA DIELECTRIC PROPERTIES OF STRONTIUM TITANATE AND CALCIUM TITANATE PREPARED VIA SOLID STATE AND MECHANICAL ALLOYING METHODS

ADSORPTION OF ACID FUCHSIN AND FAST GREEN ON ACTIVATED CARBONS

INFLUENCES OF GROUNDWATER, RAINFALL, AND TIDES ON BEACH PROFILES CHANGES AT DESARU BEACH FARIZUL NIZAM BIN ABDULLAH

NUMERICAL INVESTIGATION OF TURBULENT NANOFLUID FLOW EFFECT ON ENHANCING HEAT TRANSFER IN STRAIGHT CHANNELS DHAFIR GIYATH JEHAD

REMOVAL OF LEAD (II) BY NITRIC ACID-MODIFIED ACTIVATED CARBON

UNIVERSITI PUTRA MALAYSIA THE EFFECT OF CD AND NB ON BI-1212 SYSTEM

OPTIMIZATION OF CHROMIUM, NICKEL AND VANADIUM ANALYSIS IN CRUDE OIL USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY NURUL HANIS KAMARUDIN

INDIRECT TENSION TEST OF HOT MIX ASPHALT AS RELATED TO TEMPERATURE CHANGES AND BINDER TYPES AKRIMA BINTI ABU BAKAR

CHARACTERIZATION OF IRRADIATION MODIFICATION OF ETHYLENE VINYL ACETATE/ EPOXIDIZED NATURAL RUBBER/ HALLOYSITE NANOTUBES NANOCOMPOSITES

EFFECTS OF Ni 3 Ti (DO 24 ) PRECIPITATES AND COMPOSITION ON Ni-BASED SUPERALLOYS USING MOLECULAR DYNAMICS METHOD

UNIVERSITI PUTRA MALAYSIA

HYDROTHERMAL SYNTHESIS OF VANADIUM PHOSPHORUS OXIDE CATALYSTS FOR SELECTIVE OXIDATION OF n-butane TO MALEIC ANHYDRIDE

DETECTION OF STRUCTURAL DEFORMATION FROM 3D POINT CLOUDS JONATHAN NYOKA CHIVATSI UNIVERSITI TEKNOLOGI MALAYSIA

t,' ij HAK r.jiilik QD478.N82015 desdestabilizing agent for solid state hydrogen storage / Nurul Shafikah Mohd Mustafa.

UNIVERSITI PUTRA MALAYSIA COPYRIGHT UPM PREPARATION AND CHARACTERIZATION OF HIGH- DENSITY POLYETHYLENE/POLYSTYRENE/CLAY NANOCOMPOSITES SUSSAN AZIZY

A GENERALIZED POWER-LAW MODEL OF BLOOD FLOW THROUGH TAPERED ARTERIES WITH AN OVERLAPPING STENOSIS HUDA SALMI BINTI AHMAD

UNIVERSITI PUTRA MALAYSIA

ADSORPTION OF ARSENATE BY HEXADECYLPYRIDINIUM BROMIDE MODIFIED NATURAL ZEOLITE MOHD AMMARUL AFFIQ BIN MD BUANG UNIVERSITI TEKNOLOGI MALAYSIA

MONTE CARLO SIMULATION OF NEUTRON RADIOGRAPHY 2 (NUR-2) SYSTEM AT TRIGA MARK II RESEARCH REACTOR OF MALAYSIAN NUCLEAR AGENCY

MATHEMATICAL MODELLING OF UNSTEADY BIOMAGNETIC FLUID FLOW AND HEAT TRANSFER WITH GRAVITATIONAL ACCELERATION

UNIVERSITI PUTRA MALAYSIA DESIGN OF ROBUST PARTICLE SWARM OPTIMIZATION - TUNED FUZZY CONTROLLER FOR A SINGLE AXIS SMALL MAGNETIC LEVITATION SYSTEM

PRODUCTION OF POLYHYDROXYALKANATE (PHA) FROM WASTE COOKING OIL USING PSEUDOMONAS OLEOVORANS FARZANEH SABBAGH MOJAVERYAZDI

SPECTROSCOPIC PROPERTIES OF Nd:YAG LASER PUMPED BY FLASHLAMP AT VARIOUS TEMPERATURES AND INPUT ENERGIES SEYED EBRAHIM POURMAND

SYNTHESIS AND CHARACTERIZATION OF POLYACRYLAMIDE BASED HYDROGEL CONTAINING MAGNESIUM OXIDE NANOPARTICLES FOR ANTIBACTERIAL APPLICATIONS

UNIVERSITI PUTRA MALAYSIA STABILITY OF MARANGONI CONVECTION IN A FLUID LAYER WITH TEMPERATURE-DEPENDENT VISCOSITY NURUL HAFIZAH BINTI ZAINAL ABIDIN

COVRE OPTIMIZATION FOR IMAGE STEGANOGRAPHY BY USING IMAGE FEATURES ZAID NIDHAL KHUDHAIR

SYNTHESIS AND CHARACTERIZATION OF SUPRAMOLECULAR POLYMER BASED ON LINOLEIC ACID OF SUNFLOWER OIL MILI PURBAYA UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MARA. THE EFFECT OF Pr SUBSTITUTION AT Sr SITES IN 110K PHASE OF (Bi-Pb)-Sr-Ca-Cu-O SUPERCONDUCTING CERAMICS NAZARIN BIN NORDIN

UNIVERSITI PUTRA MALAYSIA REMOVAL OF METHYL ORANGE AND METHYLENE BLUE FROM AQUEOUS SOLUTION USING DRAGON FRUIT FOLIAGE

UNIVERSITI PUTRA MALAYSIA. SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF BiVO4, Ag-BiVO4 AND Cu-BiVO4 IN DEGRADATION OF METHYLENE BLUE

UNIVERSITI PUTRA MALAYSIA VARIABLE STEP VARIABLE ORDER BLOCK BACKWARD DIFFERENTIATION FORMULAE FOR SOLVING STIFF ORDINARY DIFFERENTIAL EQUATIONS

UNIVERSITI PUTRA MALAYSIA

OPTICAL AND THERMAL PROPERTIES OF NEODYMIUM DOPED TELLURITE NANOSTRUCTURED GLASS NUR AMANINA BINTI HJ MAT JAN

UNIVERSITI PUTRA MALAYSIA

HYDROGEN RECOVERY FROM THE REFORMING GAS USING COMMERCIAL ACTIVATED CARBON MEHDI RAHMANIAN

EFFECT OF GRAPHENE OXIDE (GO) IN IMPROVING THE PERFORMANCE OF HIGH VOLTAGE INSULATOR NUR FARAH AIN BINTI ISA UNIVERSITI TEKNOLOGI MALAYSIA

OPTICAL TWEEZER INDUCED BY MICRORING RESONATOR MUHAMMAD SAFWAN BIN ABD AZIZ

GAS PHAS E GLYCEROL DEHYDRATION TO ACROLEIN OVER SUPPORTED SILICOT UNGSTIC ACID CATALYST AMIN TALEBIAN KIAKALAIEH

MODELING AND SIMULATION OF BILAYER GRAPHENE NANORIBBON FIELD EFFECT TRANSISTOR SEYED MAHDI MOUSAVI UNIVERSITI TEKNOLOGI MALAYSIA

SORPTION OF CHROMIUM(VI) AND COPPER(II) FROM AQUEOUS SOLUTION BY CHEMICALLY-MODIFIED RICE HULL

PREPARATION AND CHARACTERIZATION OF MICROWAVE-MODIFIED ADSORBENTS FROM Casuarina equisetifolia SEEDS FOR DYE ADSORPTION APPLICATION

AUTOMATED MEASUREMENT OF LEVITATION FORCE USING LABVIEW PROGRAMMING LANGUAGE

UNSTEADY MAGNETOHYDRODYNAMICS FLOW OF A MICROPOLAR FLUID WITH HEAT AND MASS TRANSFER AURANGZAIB MANGI UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI PUTRA MALAYSIA CONVECTION BOUNDARY LAYER FLOWS OVER NEEDLES AND CYLINDERS IN VISCOUS FLUIDS SYAKILA BINTI AHMAD IPM

PREPARATION AND PROPERTIES OF REDUCED GRAPHENE OXIDE FOR DIRECT METHANOL FUEL CELL APPLICATION

FRAGMENT REWEIGHTING IN LIGAND-BASED VIRTUAL SCREENING ALI AHMED ALFAKIABDALLA ABDELRAHIM

PREPARATION AND CHARACTERISATION OF KENAF BAST FIBRE REINFORCED RECYCLED POLYPROPYLENE/RECYCLED POLYAMIDE 6 COMPOSITES

ULTIMATE STRENGTH ANALYSIS OF SHIPS PLATE DUE TO CORROSION ZULFAQIH BIN LAZIM

STABILITY AND SIMULATION OF A STANDING WAVE IN POROUS MEDIA LAU SIEW CHING UNIVERSTI TEKNOLOGI MALAYSIA

HIGH RESOLUTION DIGITAL ELEVATION MODEL GENERATION BY SEMI GLOBAL MATCHING APPROACH SITI MUNIRAH BINTI SHAFFIE

UNIVERSITI PUTRA MALAYSIA

ARTIFICIAL NEURAL NETWORK AND KALMAN FILTER APPROACHES BASED ON ARIMA FOR DAILY WIND SPEED FORECASTING OSAMAH BASHEER SHUKUR

UNIVERSITI PUTRA MALAYSIA STABILIZATION OF PEAT SOIL USING ELECTROCHEMICAL INJECTION TECHNIQUE HOSSEIN MOAYEDI

MODELING AND CONTROL OF A CLASS OF AERIAL ROBOTIC SYSTEMS TAN ENG TECK UNIVERSITI TEKNOLOGY MALAYSIA

WIND TUNNEL TEST TO INVESTIGATE TRANSITION TO TURBULENCE ON WIND TURBINE AIRFOIL MAHDI HOZHABRI NAMIN UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI PUTRA MALAYSIA DEVELOPMENT OF CAPACITIVE COMPOSITE MATERIALS USING ALKALINE TITANATES AND KAOLINITE CLAY

SYNTHESIS AND CHARACTERIZATION OF MESO-SUBSTITUTED PORPHYRIN MUHAMMAD TAHIR MUHAMMAD

UNIVERSITI PUTRA MALAYSIA EFFECT OF NON-UNIFORM TEMPERATURE GRADIENT AND MAGNETIC FIELD ON MARANGONI AND BENARD-MARANGONI CONVECTION

DIELECTRIC PROPERTIES OF CERAMICS, CaCu 3 Ti 4 O 12, SUBSTITUTED WITH Sr OR Ba

MECHANICAL PROPERTIES OF CALCIUM CARBONATE AND COCONUT SHELL FILLED POLYPROPYLENE COMPOSITES MEHDI HEIDARI UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI PUTRA MALAYSIA DETECTION OF HEAVY METAL IONS IN SOLUTION USING SURFACE PLASMON RESONANCE OPTICAL SENSOR

A COMPUTATIONAL FLUID DYNAMIC FRAMEWORK FOR MODELING AND SIMULATION OF PROTON EXCHANGE MEMBRANE FUEL CELL HAMID KAZEMI ESFEH

ELECTRODEPOSITION OF CARBOXYLATED MULTIWALL CARBON NANOTUBE ON GRAPHITE REINFORCEMENT CARBON FOR VOLTAMMETRY DETECTION OF CADMIUM

DEVELOPMENT OF PROCESS-BASED ENTROPY MEASUREMENT FRAMEWORK FOR ORGANIZATIONS MAHMOOD OLYAIY

MICROWAVE SYNTHESIS OF SODALITE FROM COAL FLY ASH AS SOLID BASE CATALYST FOR KNOEVENAGEL REACTION MOHD HILMI BIN MOHAMED

UNIVERSITI PUTRA MALAYSIA

BOUNDARY INTEGRAL EQUATION WITH THE GENERALIZED NEUMANN KERNEL FOR COMPUTING GREEN S FUNCTION FOR MULTIPLY CONNECTED REGIONS

SHAPE-BASED TWO DIMENSIONAL DESCRIPTOR FOR SEARCHING MOLECULAR DATABASE

ADSORPTION AND STRIPPING OF ETHANOL FROM AQUEOUS SOLUTION USING SEPABEADS207 ADSORBENT

UNIVERSITI PUTRA MALAYSIA OPTIMISATION OF EXTRACTION METHODS AND RHEOLOGICAL CHARACTERISTICS OF SOURSOP JUICE

SEDIMENTATION RATE AT SETIU LAGOON USING NATURAL. RADIOTRACER 210 Pb TECHNIQUE

NUMERICAL SIMULATIONS ON THE EFFECTS OF USING VENTILATION FAN ON CONDITIONS OF AIR INSIDE A CAR PASSENGER COMPARTMENT INTAN SABARIAH BINTI SABRI

ELIMINATION OF RAINDROPS EFFECTS IN INFRARED SENSITIVE CAMERA AHMAD SHARMI BIN ABDULLAH

EMPIRICAL STRENQTH ENVELOPE FOR SHALE NUR 'AIN BINTI MAT YUSOF

INDEX SELECTION ENGINE FOR SPATIAL DATABASE SYSTEM MARUTO MASSERIE SARDADI UNIVERSITI TEKNOLOGI MALAYSIA

A STUDY ON THE CHARACTERISTICS OF RAINFALL DATA AND ITS PARAMETER ESTIMATES JAYANTI A/P ARUMUGAM UNIVERSITI TEKNOLOGI MALAYSIA

DYNAMIC SIMULATION OF COLUMNS CONSIDERING GEOMETRIC NONLINEARITY MOSTAFA MIRSHEKARI

ROOFTOP MAPPING AND INFORMATION SYSTEM FOR RAINWATER HARVESTING SURAYA BINTI SAMSUDIN UNIVERSITI TEKNOLOGI MALAYSIA

ENHANCED COPY-PASTE IMAGE FORGERY DETECTION BASED ON ARCHIMEDEAN SPIRAL AND COARSE-TO-FINE APPROACH MOHAMMAD AKBARPOUR SEKEH

THE EFFECT OF THIN-LAYER ELEMENTS IN STRUCTURAL MODELING OF RAIL-TRACK SUPPORTING SYSTEM

UNIVERSITI PUTRA MALAYSIA. STRUCTURAL ANALYSIS AND ELECTRICAL CHARACTERISATIONS OF Sr(1-x)CaxTiO3 AND Sr(1-x)BaxTiO3 CERAMICS AZIZAH BINTI ISHAK

CHARACTERISTICS OF SOLITARY WAVE IN FIBER BRAGG GRATING MARDIANA SHAHADATUL AINI BINTI ZAINUDIN UNIVERSITI TEKNOLOGI MALAYSIA

DEMULSIFICATION OF CRUDE OIL EMULSIONS VIA MICROWAVE ASSISTED CHEMICALS (ENVIRONMENTAL FRIENDLY) NUR HAFIZAH BINTI HUSSIN

COMPUTATIONAL MODELLING AND SIMULATION OF BIOMAGNETIC FLUID FLOW IN A STENOTIC AND ANEURYSMAL ARTERY NURSALASAWATI BINTI RUSLI

ALTERNATIVE STRIP METHOD FOR A LATERALLY DRIFTING SHIP IN WAVES MUHAMAD BIN RAMLI

FOURIER TRANSFORM TECHNIQUE FOR ANALYTICAL SOLUTION OF DIFFUSION EQUATION OF CONCENTRATION SPHERICAL DROPS IN ROTATING DISC CONTACTOR COLUMN

MORPHOLOGICAL, GENETIC AND BIOLOGICAL STUDIES OF RED PALM WEEVIL, Rhynchophorus spp. (COLEOPTERA: CURCULIONIDAE) IN TERENGGANU, MALAYSIA

MODELLING AND EXPERIMENTAL INVESTIGATION ON PERFORATED PLATE MOBILITY CHEAH YEE MUN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SYNTHESIS AND PHYSICOCHEMICAL CHARACTERIZATION OF PAMOATE-INTERCALATED ZINC-ALUMINIUM LAYERED DOUBLE HYDROXIDE HYBRID NANOCOMPOSITE

SYNTHESIS AND CATALYTIC PERFORMANCE OF PALLADIUM(II) HYDRAZONE COMPLEXES IN SUZUKI-MIYAURA CROSS-COUPLING REACTION

INVESTIGATION ON MORPHOLOGY AND STRUCTURAL PROPERTIES OF 2D CARBON NANOSTRUCTURE GROWN VIA 150 MHz PECVD

ONLINE LOCATION DETERMINATION OF SWITCHED CAPACITOR BANK IN DISTRIBUTION SYSTEM AHMED JAMAL NOORI AL-ANI

UNIVERSITI PUTRA MALAYSIA IMPREGNATION OF IN-HOUSE SYNTHESIZED CARBON NANOTUBES INBACTERIAL CELLULOSE

OPTIMAL CONTROL BASED ON NONLINEAR CONJUGATE GRADIENT METHOD IN CARDIAC ELECTROPHYSIOLOGY NG KIN WEI UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF GEODETIC DEFORMATION ANALYSIS SOFTWARE BASED ON ITERATIVE WEIGHTED SIMILARITY TRANSFORMATION TECHNIQUE ABDALLATEF A. M.

UNIVERSITI PUTRA MALAYSIA EFFECT OF PRESSURE AND THICKNESS ON THE ELASTIC AND DIELECTRIC PROPERTIES OF CHITOSAN

Transcription:

UNIVERSITI PUTRA MALAYSIA EFFECT OF MAGNETIC NANOPARTICLE ADDITION ON THE SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O HUSSEIN ABDULLAH HUSSEIN BAQIAH FS 2009 19

EFFECT OF MAGNETIC NANOPARTICLE ADDITION ON THE SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O By HUSSEIN ABDULLAH HUSSEIN BAQIAH Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science September 2009

DEDICATION To my wife, my daughter and my son for Their love, understanding and support To my mother, my father and family For their concern and support..

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science EFFECT OF MAGNETIC NANOPARTICLE ADDITION ON THE SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O By HUSSEIN ABDULLAH HUSSEIN BAQIAH September 2009 Chairman: Professor Dr. Abdul Halim Shaari, PhD Faculty: Science The effect of magnetic nanoparticle additions on the (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x -(nano M) x with M= Sm 2 O 3, Ho 2 O 3, Nd 2 O 3 and x= 0.0-0.05 systems, sintered at 850 C for 30 hours were investigated by X- ray diffraction techniques, critical temperature measurement, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Magnetic nanoparticles, M= Sm 2 O 3, Ho 2 O 3 and Nd 2 O 3 with 14.8 nm, 18 nm and 49-64 nm particle sizes respectively, were mixed with Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ precursor powder prepared by solid state reaction method before the final step heat treatment process. The phase purity, lattice parameters, superconducting properties, surface morphology and grain size were found to be dependent on the magnetic nanopatricles concentration in the sample. The XRD result indicate that the dominant high T c (Bi2223) phase decrease due to the increase of low T c phase (Bi2212) with the presence of magnetic nanoparticles with 0<x 0.02 and the later phase become significant for ii

further addition. The lattice parameters calculated from XRD data show a slight decrease in the c-axis while a-axis increase for initial nanoparticale addition. Lattice parameters decrease monotonically with x 0.02. The scanning electron microscopy viewing shows platelets like-grain for all samples which is a signature of Bi2223 and Bi2212 phases. The existence of large oriented platelet-like grains that have been observed in pure sample surface, are maintained for sample with 0<x<0.02. Further more the previous samples have small, randomly oriented platelet-like grains that increase with the increase in magnetic nanoparticles content. For x 0.02 the sample surface becomes more porous with large amount of randomly oriented platelet grains. The elemental analysis by EDX measurement of sample with x=0.05 reveals the existence of nanoparticles that homogeneously distributed in BSCCO matrix. The chemical formula of sample s elements composition that has been estimated from EDX measurements is in good approximation to that of Bi2223 system with noticeable excess in oxygen ratio which may be due to the existence of magnetic oxide nanoparticles in the sample. All samples exhibit normal metallic behavior above superconducting transition temperature. Zero resistivity temperature T c (R=0) which is around 102 K for pure sample was found to gradually decrease to lower temperature with magnetic nanoparticle additions and decrease to that of the low-t c (2212) with x 0.02. The onset transition temperature T c is almost the same for sample with 0.005 x 0.02 and become lower with higher iii

concentration of addition. The superconducting transition width becomes wider with increase in the magnetic nanoparticles addition. The hole concentration, p, of pure sample under preparation condition is around 0.13. The introduction of magnetic nanoparticles causes a decrease in the hole concentration of Bi2223 system. This decrease characterize by two steps. For initial addition of magnetic nanoparticle, the reduction of hole concentration per change in magnetic nanoparticles addition, p/ x, is more than when x>0.02 for Ho 2 O 3 and Nd 2 O 3 and at x>0.03 for Sm 2 O 3 addition. iv

Abstrak tesis yang dikemuakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains KESAN PENAMBAHAN BUTIRAN NANO MAGNET KEATAS SIFAT SUPERKONDUKTOR Bi-Pb-Sr-Ca-Cu-O Oleh HUSSEIN ABDULLAH HUSSEIN BAQIAH September 2009 Pengerusi: Profesor Abdul Halim Shaari, PhD Fakulti: Sains Kesan penambahan butiran nano magnet keatas sistem (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano M) x dengan M= Sm 2 O 3, Ho 2 O 3, Nd 2 O 3 dan x= 0.0-0.05 yang disinter pada 850 C selama 30 jam dikaji dengan teknik XRD, pengukuran suhu genting (T c ), mikroskopi elektron imbasan dan serakan tenaga sinar-x (EDX). Butiran nano magnet dicampur dengan serbuk pelopor Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ disediakan dengan kaedah keadaan pepejal sebelum langkah terakhir proses rawatan haba. Ketulenan fasa, parameter kekisi, sifat superkonduktor, morfologi permukaan dan saiz butiran dipercayai bergantung kepada kepekatan butiran nano magnet. Keputusan XRD menunjukkan fasa dominan (Bi2223) berkurang berdasarkan pertambahan fasa (Bi2212) dengan kehadiran butiran nano magnet pada 0.0<x 0.02 dan kemudian fasa tersebut menunjukkan perbezaan besar untuk penambahan seterusnya. Pengiraan parameter kekisi dari data XRD menunjukkan sedikit pengurangan pada paksi-c manakala v

penambahan pada paksi-a untuk penambahan awal butiran nano. Parameter kekisi berkurang secara monoton dengan x 0.02. Mikroskopi elektron imbasan menunjukkan kepingan seperti butiran untuk semua sampel yang menunjukkan kehadiran fasa Bi2223 dan Bi2212. Kehadiran kepingan butiran yang besar dan terjajar dapat diperhatikan dalam permukaan sampel tulen, hanya pada sampel 0<x 0.02. Sampel yang terkemudian mempunyai butiran yang kecil, kepingan butiran terjajar bertambah dengan penambahan kandungan butiran nano magnet. Untuk sampel x 0.02, permukaannya menjadi lebih poros disebabkan kandungan butiran kepingan rawak yang banyak. Analisis unsur dengan pengukuran EDX pada sampel x=0.05 menunjukkan kehadiran butiran nano yang homogen didalam matrik BSCCO. Formula kimia untuk komposisi elemen sampel yang telah dianggar dari pengukuran EDX menunjukkan sistem Bi2223 lebih peratusan oksigen yang ketara yang disebabkan oleh kehadiran butiran nano magnet oksida di dalam sampel. Semua sampel menunjukkan sifat logam selepas suhu transisi superkonduktor. Suhu rintangan sifar T c (R=0) pada 102 K untuk sampel tulen ketara berkurang ke suhu yang lebih rendah dengan penambahan butiran nano magnet dan berubah menjadi (Bi2212) pada x 0.02. Permulaan suhu peralihan T c, adalah hampir sama bagi kesemua sampel 0.005 x 0.02 dan menjadi lebih rendah dengan pertambahan kepekatan. Lebar peralihan kesuperkonduksian bertambah dengan pertambahan nanozarah. Kepekatan lohong, p, sampel tulen semasa penyediaan adalah pada sekitar 0.13. vi

Pertambahan butiran nano magnet menyebabkan pengurangan kepekatan lohong pada sistem Bi2223. Pengurangan ini ditunjukkan dengan dua langkah. Penambahan awal butiran nano magnet telah mengurangkan kepekatan lohong setiap perubahan penambahan butiran nano magnet p/ x, lebih daripada langkah kedua dimana x>0.02 untuk Ho 2 O 3 dan Nd 2 O 3 dan x>0.03 untuk pertambahan Sm 2 O 3. vii

Acknowledgement In the name of Allah the most Gracious, the most Merciful Praise and thanks be to Allah the Almighty, for thee (alone) we worship and thee we ask for help. And peace be upon Mohammad S.A.W. whose guidance has led us to the path that Allah has favored. I am extremely grateful to my supervisor, Professor Dr. Abdul Halim Shaari for all the patience, guidance, advice, ideas, comments, encouragement and continuous support, my deepest gratitude goes to him. I also express my gratitude to my co-supervisor, Dr. Chen Soo Kien and Dr. Imad Moh d Hamadneh for their comments, suggestions, and guidance throughout my research work. I am extremely grateful to my lab-mates, Zalita, Faisal, Saaida; thanks a lot for your help and understanding to carry out this research. I am also very much obliged to Dr. Malik and Dr. Walter for their discussion and comments. I express my feeling of gratitude to my friends Mohd Hanif, Kong Wie for their help. I am very thankful to Mr Razak Harun, Mr Mohd Zin and other technical staff in the Physics Department for their technical support. To my wife, Ala, my daughter Ghida, and my son Ayham: thank you for your love, continuous support, encouragement and understanding. Last but not least I shall never forget to thank my mother, my father, my sisters and my brother for supporting me in my academic trip in a myriad of ways. May Allah Bless You All viii

I certify that a Thesis Examination Committee has met on 3 rd September 2009 to conduct the final examination of Hussein Abdullah Hussein Baqiah on his thesis entitled " Effect of Magnetic Nanoparticles Addition on the Superconducting Properties of Bi-Pb-Sr-Ca-Cu-O " in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science. Members of the Thesis Examination Committee were as follows: Azmi Zakaria, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman) Sidek Hj. Abd. Aziz, PhD Professor Faculty of science Universiti Putra Malaysia (Internal Examiner) Jumiah Hassan, PhD Associate Professor Faculty of science Universiti Putra Malaysia (Internal Examiner) Roslan Abd. Shukor, PhD Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia Malaysia (External Examiner) BUJANG BIN KIM HUAT, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia Date: ix

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows: Abdul Halim Shaari, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman) Chen Soo Kien, PhD Faculty of Science Universiti Putra Malaysia (Member) Imad Moh d Hamadneh, PhD Professor Assistant Chemistry Department, Faculty of Science University of Jordan (Member) HASANAH MOHD GHAZALI, PhD Professor and Dean School of Graduate Studies University Putra Malaysia Date: x

DECLARATION I declare that the thesis is my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution. Hussein Abdullah Hussein Baqiah Date: xi

LIST OF TABLES Tables Pages 1:1 Some important HTS and their approximate critical temperature. 6 1.2 Lattice parameters of superconducting phases in Bi Sr Ca Cu O system and of Pb substituted Bi2223 2.1 Summary of critical temperature of pure and added Bi 1.7 Pb 0.4 Sr 2 Ca 1.1 Cu 2.1 RE x Oy system where RE=(La, Ce, Pr, Nd, Sm, Gd, Dy, Yb) 3.1 The critical temperatures of some superconducting phases in two HTS systems with different number of CuO 2 plane 5.1 Summary the lattice parameters of both Bi2223 and Bi2212 phases of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 )x samples with x= 0.0-0.05 5.2 Summary the lattice parameters of both Bi2223 and Bi2212 phases of of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05 5.3 Summary the lattice parameters of both Bi2223 and Bi2212 phases of of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples with x= 0.0-0.05 5.4 Superconducting transition parameter, T c, T of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x samples with x= 0.0-0.05 5.5 The value of dρ/dt peak against temperature of and the peak width at half maximum (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hour 5.6 Superconducting transition parameter, T c, T of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05 5.7 The value of dρ/dt peak and width at half maximum of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hour 9 16 31 42 45 50 75 79 82 85 xii

5.8 Superconducting transition parameters, T c, T of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples with x= 0.0-0.05 5.9 The value of dρ/dt peak and width at half maximum of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hour 89 93 xiii

LIST OF FIGURES Figures 1.1 A taypical normal to superconducting transitionat T c (R=0) curve 1.2 The Magnetic field-temperature phase diagram of type I superconductors 1.3 Phase diagram of type II superconductors & schematic diagram of single vortex 1.4 Schematic crystal structures of the homologous series of Bi 2 Sr 2 Ca n 1 Cu n O 2n+4 superconductors with n =1 (Bi 2 Sr 2 CuO 6, abbreviated as Bi2201), n =2 (Bi 2 Sr 2 CaCu 2 O 8 Bi2212) and n= 3 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 Bi2223) 3.1 The energy gap symmetry above Fermi surface for LTS(a) & HTS(b) 3.2 Generic phase diagram of cuprate superconductors over hole doping in CuO 2 plane 4.1 Flow chart for preparation pure Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ superconductors Page 3 4 5 8 28 29 33 4.2 Schematic diagram of the four point probe technique 36 5.1 X-rays diffractions patterns of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x samples, sintered at 850 C for 30 hours, with x=0.0-0.05 Sm 2 O 3 nanoparticle addition 5.2 Volume fraction of Bi2223 and Bi2212 phases against Sm 2 O 3 nanoparticle addition 5.3 Unit cell volume of both Bi2223 and Bi2212 phases of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 )x samples with x= 0.0-0.05 5.4 X-rays diffractions patterns of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples, sintered at 850 C for 30 hours, with x=0.0-0.05 Ho 2 O 3 nanoparticles addition 5.5 Volume fraction of Bi2223 and Bi2212 phases against Ho 2 O 3 nanoparticle addition 5.6 Unit cell volume of both Bi2223 and Bi2212 phases of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05 5.7 X-rays diffractions patterns of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples sintered at 850 C for 30 hours, with x=0.0-0.05 Nd 2 O 3 nanoparticle addition 40 41 42 44 44 46 48 xiv

5.8 Volume fraction of Bi2223 and Bi2212 phases against Nd 2 O 3 49 nanoparticle addition 5.9 Unit cell volume of both Bi2223 and Bi2212 phases of 50 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples with x= 0.0-0.05 5.10 Atomic ratio percentage of element composition 57 Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ -(nano Sm 2 O 3 ) x sample with x= 0.05 5.11 Atomic ratio percentage of element composition 64 Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ -(nano Ho 2 O 3 ) x sample with x= 0.05 5.12 Atomic ratio percentage of element composition 71 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x sample with x= 0.05 5.13 Normalized resistance temperature of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-74 x(nano Sm 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours. 5.14 Hole concentration dependence-critical temperature T c (K) for 76 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.15 Hole concentration Sm 2 O 3 nanoparticle addition graph of 77 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.16 Derivative of resistance dρ/dt against temperature graphs of 79 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.17 Normalized resistance temperature of 81 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30hours. 5.18 Hole concentration-critical-temperature T c (K) dependence for 83 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.19 Hole concentration Ho 2 O 3 nanoparticle addition graph of 84 (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours xv

5.20 Derivative of resistance dρ/dt against temperature graphs of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.21 Normalized resistance temperature of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1- x(nano Nd 2 O 3 ) x samples with x= 0.0-0.05, after final sintering at 850 C for 30hours 5.22 Hole concentration -critical temperature T c (K) dependence for (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.23 Hole concentration Nd 2 O 3 nanoparticle concentration graph of of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 5.24 Derivative of resistance dρ/dt against temperature graphs of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x samples with x= 0.0-0.05, sintered at 850 C for 30 hours 86 88 90 91 93 xvi

LIST OF PLATES Plates Pages 4.1 X'Pert HighScore difractometer 37 4.2 Scanning Electron Microscopy (SEM) model (JEOL: JSM-6400) 38 5.1 SEM micrograph of Pure Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ superconductors sintered at 850 C C for 30 hours 5.2 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x with x=0.005 superconductors sintered at 850 C for 30 hours 5.3 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x with x=0.01 superconductors sintered at 850 C for 30 hours 5.4 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x with x=0.02 superconductors sintered at 850 C for 30 hours 5.5 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x with x=0.03 superconductors sintered at 850 C for 30 hours 5.6 Areas of X-rays spectrum in the same micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x with x= 0.05 5.7 a)the distribution of Sm 2 O 3 nanoparticles in (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x sample with x= 0.05 from cross section viewer, (b) inset mapping of Sm ions. 5.8 The distribution of Sm 2 O 3 nanoparticles in (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Sm 2 O 3 ) x sample with x= 0.05 from surface viewer,(b) inset mapping of Sm ions. 5.9 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x with x=0.005 superconductors sintered at 850 C for 30 hours 5.10 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x with x=0.01superconductors sintered at 850 C for 30 hours 5.11 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x with x=0.02superconductors sintered at 850 C for 30 hours 51 53 53 54 54 56 57 58 60 60 61 xvii

5.12 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x with x=0.03superconductors sintered at 850 C for 30 hours 61 5.13 Areas of X-rays spectrum in the same micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x with x= 0.05 63 5.14 (a)the distribution of Ho 2 O 3 nanoparticles in (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x sample with x= 0.05 from cross section viewer, (b) inset mapping of Ho ion. 5.15 (a)the distribution of Ho 2 O 3 nanoparticles in (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Ho 2 O 3 ) x sample with x= 0.05 from surface viewer, (b), inset mapping of Ho ions. 5.16 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x with x=0.005 superconductors sintered at 850 C for 30 hours 64 65 67 5.17 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x with x=0.01 superconductors sintered at 850 C for 30 hours 67 5.18 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x with x=0.02 superconductors sintered at 850 C for 30 hours 68 5.19 SEM micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x with x=0.03 superconductors sintered at 850 C for 30 hours 68 5.20 Areas of X-rays spectrum in the same micrograph of (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x with x= 0.05 70 5.21 (a) The distribution of Nd 2 O 3 nanoparticles in (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x sample with x= 0.05 from cross section viewer, (b), inset mapping of Nd ions. 5.22 The distribution of Nd 2 O 3 nanoparticles in (Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ ) 1-x (nano Nd 2 O 3 ) x sample with x= 0.05 from surface viewer, inset mapping of Nd ions. 71 72 xviii

LIST OF SYMBOL AND ABBREVIATION T T c T c onset T c (R=0) HTS LTS BSCCO GL theory YBCO k BSC B H c,h c1,h c2 e h φ k B ξ λ R a,b,c Temperature Critical temperature Onset critical temperature Zero resistance temperature High temperature superconductors Low temperature superconductors Bi-Sr-Ca-Cu-O system Ginzburg-Landau theory Y-Ba-Cu-O system Kelvin Bardeen, Cooper, and Schrieffer theory Magneticfield Critical magnetic field Electron charge Plank constant Magnetic flux Boltzman constant Coherence length Penetrating depth Resistance Lattice parameter xix

Bi2201 Phase member in Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 with n=1 Bi2212 Phase member in Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 with n=2 Bi2223 Phase member in Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 with n=3 RE Sm 2 O 3 Ho 2 O 3 Nd 2 O 3 Rare earth elements Samarium Oxide Holmium Oxide Neodymium Oxide A Angstrom ϕ n c ψ 2Δ V p ω D Spatially varying phase Cooper pair density Quantum wave function Width of energy gap Electron phonon interaction factor Phonon cut-off Debye frequency k e STM AFM p M θ hkl SEM ICDD Elastic constant Scanning tunneling microscopy Antiferromagnetic Hole concentration Isotope mass Bragg angle Miller index Scanning Electron Microscope International Center for Diffraction Data xx

XRD n p EDX X-Rays Diffraction Magneton number Elemental Compositional Analysis FESEM Field Emission Scanning Electron Microscope T p x Superconducting transition width Reduction of hole concentration Changing of magnetic nanoparticles addition xxi

TABLE OF CONTENTS DEDICATION ABSTRACT ABSTRAK ACKNOWLEDGEMENT APPROVAL SHEETS DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF PLATES LIST OF SYMBOL AND ABBREVIATIONS Page ii iii vi ix x xi xii xiv xvii xix CHAPTER 1 INTRODUCTION 1 1.1 Brief Historical Review 1 1.2 Superconductivity : a Brief Overview 3 1.3 High Temperature Superconductors 5 1.4 BSCCO System 7 1.5 Research Objectives 9 2 LITERATURE REVIEW 11 2.1 Effect of Nanoparticle addition on BSCCO system 11 2.2 Effect of Rare Earth on BSCCO System 14 2.2.1 Effect of Rare Earth on Bi2212 Phase 14 2.2.2 Effect of Rare Earth on Bi2223 Phase 16 2.3 Effect of Normal powders Addition on BSCCO System 22 3 MICROSCOPIC THEORY AND HIGH TEMPERATURE SUPERCONDUCTIVITY 25 3.1 BCS Theory 25 3.2 Superconductivity In HTS 27 4 METHODOLGY 32 4.1 Chemical preparation 32 4.1.1 Pure Sample Preparation 32 4.1.2 Addition Of Nanoparticles 34 4.2 Characterization techniques 35 4.2.1 Resistivity Measurements 35 4.2.2 X-rays Diffraction Measurements 36 xxii

4.2.3 Microstructure Analysis 38 5 RESULTS AND DISCUSSION 39 5.1 X-Rays Diffractions Measurements 39 5.1.1 Effect Of Sm 2 O 3 Nanoparticle Addition 39 5.1.2 Effect of Ho 2 O 3 Nanoparticle addition 43 5.1.3 Effect of Nd 2 O 3 Nanoparticle Addition 47 5.2 Microstructure and EDX analysis 51 5.3.1 Pure Sample Morphology 51 5.2.1 Effect of Sm 2 O 3 Nanoparticle Addition 52 5.2.2 Effect of Ho 2 O 3 Nanoparticle Addition 59 5.2.3 Effect of Nd 2 O 3 Nanoparticle Addition 66 5.3 Resistivity Measurements 73 5.3.2 Effect of Sm 2 O 3 Nanoparticle Addition 73 5.3.3 Effect of Ho 2 O 3 Nanoparticle Addition 80 5.3.4 Effect of Nd 2 O 3 Nanoparticle Addition 86 6 CONCLUSION 94 RECOMMENDATION FOR FUTURE WORK 96 REFERENCES 99 APPENDICES 102 BIODATA OF STUDENT 106 LIST OF PUBLICATIONS 109 xxiii