arxiv: v1 [math.co] 27 Jul 2012

Similar documents
arxiv: v1 [math.co] 14 Apr 2012

Ricci curvature and geometric analysis on Graphs

Logarithmic Harnack inequalities

arxiv: v2 [math.dg] 18 Nov 2016

Li-Yau inequality on virtually Abelian groups

Ollivier Ricci curvature for general graph Laplacians

arxiv: v2 [math.co] 2 Jul 2013

Liouville Properties for Nonsymmetric Diffusion Operators. Nelson Castañeda. Central Connecticut State University

A Faber-Krahn type inequality for regular trees

curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13

RICCI CURVATURE, CIRCULANTS, AND A MATCHING CONDITION

Eigenvalues of graphs

arxiv: v1 [math.co] 1 Jan 2013

Lecture No 1 Introduction to Diffusion equations The heat equat

Weighted Graph Laplacians and Isoperimetric Inequalities

SPECTRAL GAP, LOGARITHMIC SOBOLEV CONSTANT, AND GEOMETRIC BOUNDS. M. Ledoux University of Toulouse, France

Graph fundamentals. Matrices associated with a graph

Introducing the Laplacian

Eigenvalue comparisons in graph theory

Eigenvalues of 2-edge-coverings

Discrete Ricci curvature: Open problems

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

Averaging 2-Rainbow Domination and Roman Domination

1 Definition of the Riemann integral

arxiv: v1 [math.dg] 10 Dec 2014

UPPER BOUNDS FOR EIGENVALUES OF THE DISCRETE AND CONTINUOUS LAPLACE OPERATORS

arxiv: v2 [math.co] 4 Jul 2017

Analysis of the physical Laplacian and the heat flow on a locally finite graph

OLLIVIER RICCI CURVATURE AND THE SPECTRUM OF THE NORMALIZED GRAPH LAPLACE OPERATOR

Isoperimetric inequalities for cartesian products of graphs

Petar Maymounkov Problem Set 1 MIT with Prof. Jonathan Kelner, Fall 07

M. Ledoux Université de Toulouse, France

An Introduction to Discrete Vector Calculus on Finite Networks

The least eigenvalue of the signless Laplacian of non-bipartite unicyclic graphs with k pendant vertices

Finite Presentations of Hyperbolic Groups

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Lecturer: Naoki Saito Scribe: Ashley Evans/Allen Xue. May 31, Graph Laplacians and Derivatives

L -uniqueness of Schrödinger operators on a Riemannian manifold

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

arxiv: v1 [math.mg] 28 Sep 2017

Universal inequalities for eigenvalues. of elliptic operators in divergence. form on domains in complete. noncompact Riemannian manifolds

A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH. John Pike

Properties of Ramanujan Graphs

Heat Flows, Geometric and Functional Inequalities

Richard F. Bass Krzysztof Burdzy University of Washington

Energy, Laplacian Energy and Zagreb Index of Line Graph, Middle Graph and Total Graph

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Relationships between cycles spaces, gain graphs, coverings, path homology, and graph curvature

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO

Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

Volume comparison theorems without Jacobi fields

arxiv: v1 [math.co] 6 Feb 2011

Spectral Graph Theory and its Applications

Regularization on Discrete Spaces

Convexity and unique minimum points

An Introduction to Spectral Graph Theory

Spectra of Digraph Transformations

Inverse Perron values and connectivity of a uniform hypergraph

ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX

Note on the normalized Laplacian eigenvalues of signed graphs

Continuous Functions on Metric Spaces

The eigenvalue problem in Finsler geometry

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

arxiv: v1 [math.fa] 13 Jul 2018

Bounded Tiling-Harmonic Functions on the Integer Lattice

Energy on fractals and related questions: about the use of differential 1-forms on the Sierpinski Gasket and other fractals

Convexity and constructive infima

Florentin Münch - Curriculum Vitae

On the distance signless Laplacian spectral radius of graphs and digraphs

BASICS OF CONVEX ANALYSIS

arxiv: v1 [math.dg] 25 Nov 2009

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Spectral diameter estimates for k-regular graphs

BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2k-INNER PRODUCT SPACES. Seong Sik Kim* and Mircea Crâşmăreanu. 1. Introduction

Lecture 8: Path Technology

Hamilton-Connected Indices of Graphs

Spectral Bounds on the Chromatic Number

the neumann-cheeger constant of the jungle gym

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1

Geometric bounds for Steklov eigenvalues

8 Further theory of function limits and continuity

Eigenvalues of Collapsing Domains and Drift Laplacian

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19

The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences. Dedicated to professor Tian Feng on the occasion of his 70 birthday

Lecture 4: Convex Functions, Part I February 1

Math 110 Midterm 1 Study Guide October 14, 2013

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

Applied Mathematics Letters

arxiv:math/ v1 [math.pr] 31 Jan 2001

Reversible Markov chains

APPROXIMATING COARSE RICCI CURVATURE ON METRIC MEASURE SPACES WITH APPLICATIONS TO SUBMANIFOLDS OF EUCLIDEAN SPACE

Logarithmic Sobolev, Isoperimetry and Transport Inequalities on Graphs

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

Laplacian and Random Walks on Graphs

Analysis on Graphs. Alexander Grigoryan Lecture Notes. University of Bielefeld, WS 2011/12

Normalized Laplacian spectrum of two new types of join graphs

Transcription:

Harnack inequalities for graphs with non-negative Ricci curvature arxiv:1207.6612v1 [math.co] 27 Jul 2012 Fan Chung University of California, San Diego S.-T. Yau Harvard University May 2, 2014 Abstract Yong Lin Renmin University of China We establish a Harnack inequality for finite connected graphs with non-negative Ricci curvature. As a consequence, we derive an eigenvalue lower bound, extending previous results for Ricci flat graphs. 1 Introduction Let G be an undirected finite connected weighted graph with vertex set V and edge set E. The edge weight of an edge {x,y} is denoted by w xy and the degree is the sum of all w xy over all y adjacent to x. The Laplace operator of a graph G is defined by f(x) = 1 ( ) w xy f(y) f(x) for any function f V R = {f f : V R} and any vertex x V. Suppose a function f V R satisfies that, for every vertex x V, ( )f(x) = 1 ( ) w xy f(x) f(y) = λf(x). Then f is called a harmonic eigenfunction of the Laplace operator on G with eigenvalue λ. For a finite graph, it is straightforward to verify that λ is an eigenvalue for the (normalized) Laplacian L as a matrix defined by L = = 1 D 1/2 AD 1/2 where D is the diagonal degree matrix and A is the weighted adjacency matrix with A(x,y) = w xy. Because of the positivity of L, a connected graph has all eigenvalues positive except for one eigenvalue zero. 0 Classification:[2000]31C20, 31C05 Keywords: The Laplace operator for graphs, the Harnack inequalities, eigenvalues, diameter. 1

From this definition, at each vertex x, the eigenfunction locally stretches the incident edges in a balanced fashion. Globally, it is desirable to have some tools to capture the notion that adjacent vertices are close to each other. A crucial part of spectral graph theory concerns understanding the behavior of eigenfunctions. Harnack inequalities are one of the main methods for dealing with eigenfunctions. The Harnack inequalities for certain special families of graphs, called Ricci flat graphs (see [4]), are formulated as follows: (1.1) 1 (f(x) f(y)) 2 8λmaxf 2 (z) z for any eigenfunction f with eigenvalue λ > 0. In general, the above inequality does not hold for all graphs. An easy counterexample is the graph formed by joining two complete graphs of the same size by a single edge [4]. In this paper, we will establish a Harnack inequality for general graphs. We consider graphs with non-negative Ricci curvature κ and we will show the following: (1.2) 1 (f(x) f(y)) 2 (8λ 4κ)maxf 2 (z) z for any graph with Ricci curvature κ. The definition of the Ricci curvature for graphs will be given in the next section. For a graph G, the diameter of G is the least number D such that any two vertices in G are joined by a path with at most D edges. By using the above Harnack inequality, we will derive the following eigenvalue/diameter inequality for graphs with non-negative Ricci curvature. λ 1+2κdD2 4d D 2 where d is the maximum degree and D denotes the diameter of G (i.e., any two vertices can be joined by a path with at most D edges). 2 The Ricci curvature for graphs In [4] and [5], Chung and Yau defined Ricci flat graphs and proved that inequality (1.1) and (1.4) hold for a large family of Ricci flat graphs. There are several ways to define Ricci curvature for a general graph. In this paper, we will use the definition of Ricci curvature for graphs in the sense of Bakry-Emery [1], as introduced in [6]. We note that a different notion of Ricci curvature was introduced by Ollivier [7]. TodefinetheRiccicurvatureofagraph, webeginwithabilinearoperatorγ : V R V R V R, defined by Γ(f,g)(x) = 1 2 { (f(x)g(x)) f(x) g(x) g(x) f(x)}. According to Bakry and Emery [1], the Ricci curvature operator Γ 2 is defined by: Γ 2 (f,g)(x) = 1 2 { Γ(f,g)(x) Γ(f, g)(x) Γ(g, f)(x)}. 2

For simplicity, we will omit the variable x in the following equations. Note that all the equations hold locally for every x V. Definition 2.1. The operator satisfies the curvature-dimension type inequality CD(m, κ) for m (1,+ ) if Γ 2 (f,f) 1 m ( f)2 +κγ(f,f). We call m the dimension of the operator and κ a lower bound of the Ricci curvature of the operator. If Γ 2 κγ, we say that satisfies CD(,κ). It is easy to see that for m < m, the operator satisfies the curvature-dimension type inequality CD(m,K) if it satisfies the curvature-dimension type inequality CD(m,K). Here we list a number of helpful facts concerning Γ, Γ 2 and the Ricci curvature that will be useful later. From the definition of Γ, we can express Γ in the following alternative formulation. The derivation is straightforward and we omit the proof here. Lemma 2.2. (2.1) (2.2) Γ(f,g)(x) = 1 ( )( ) w xy f(x) f(y) g(x) g(y). 2 Γ(f,f)(x) = 1 w xy [f(x) f(y)] 2 = 1 2 2 f 2 (x). For Laplace-Beltrami operator on a complete m dimensional Riemannion manifold, the operator satisfies CD(m, K) if the Ricci curvature of the Riemanian manifold is bounded below by κ. For graphs, a similar bound can be established as follows. Lemma 2.3. In a connected graph G, let λ denote a non-trivial eigenvalue. Then the Ricci curvature κ of G satisfies κ λ. Proof: Let f denote a harmonic eigenvector associated with eigenvalue λ. Consider the vertex x which achieves the maximum of f 2. Then we have f 2 0 and therefore From the definition of κ, we have Γ 2 (f,f) Γ(f, f) = λγ(f,f). λγ(f,f) 1 m ( f)2 +κγ(f,f). Thus we have κ λ. We remark that Lemma 2.3 can be slightly improved to λ κ(1+1/(m 1)) as seen in [3]. It was proved in [6] that the Ricci flat graphs as defined in [4] and [5] are graphs satisfy CD(,0). In [6], it was shown that any locally finite connected G satisfy the CD( 1 2, 1 d 1), if the maximum degree d is finite, or CD(2, 1) if d is infinite. Thus, the Ricci curvature of a graph G has a lower bound 1. 3

3 Harnakc inequality and eigenvalue estimate First, we will establish several basic facts for graphs with non-negative Ricci curvature. Lemma 3.1. Suppose G is a finite connected graph satisfying CD(m,κ). Then for x V and f V R, we have ( 4 m 2)( f(x))2 +(2+2κ) f 2 (x) 1 w xy w yz [f(x) 2f(y)+f(z)] 2. d y Proof: We consider (Γ(f, f)). By straightforward manipulation and (2.2), we have (Γ(f,f))(x) = 1 2 and by (2.1) we have = 1 2 w xy w xy 1 ( w yz [f(x) f(y)] 2 +[f(y) f(z)] 2) d y w yz [f(x) 2f(y)+f(z)] 2 d y w xy w yz [f(x) 2f(y)+f(z)][f(x) f(y)], d y Γ(f, f)(x) = 1 2 1 w xy [f(y) f(x)] [ f(y) f(x)]. By the definition of Γ 2 (f,f), we have Γ 2 (f,f)(x) = 1 1 w xy w yz [f(x) 2f(y)+f(z)] 2 4 d y ( ) 2 1 1 w xy [f(x) f(y)] 2 + 1 1 w xy (f(x) f(y)) 2 2 d x = 1 1 w xy (3.1) w yz [f(x) 2f(y)+f(z)] 2 frac12 f 2 (x)+ 1 4 d y 2 ( f)2. Since G satisfies CD(m,κ), we have From above inequality, we obtain ( 1 m 1 2 )( f)2 + 1+κ 2 Γ 2 (f,f) 1 m ( f)2 +κγ(f,f). f 2 1 1 4 w xy w yz [f(x) 2f(y)+f(z)] 2 d y as desired. By using Lemma 3.1, we can prove the following Harnack type inequality. The idea of proof comes from [4]. 4

Theorem 3.2. Suppose that a finite connected graph G satisfies CD(m,κ) and f V R is a harmonic eigenfunction of Laplacian with eigenvalue λ. Then the following inequality holds for all x V and α 2 2κ/λ f 2 (x)+αλf 2 (x) (α2 4 m )λ+2κα (α 2)λ+2κ λmax z V f2 (z). Proof: Using Lemmas 2.2 and 3.1, we have ( ) f 2 (x) = 1 w xy w yz [f(x) 2f(y)+f(z)] 2 d y + 2 w xy w yz [f(x) 2f(y)+f(z)] [f(x) f(y)] d y Now we consider (2+2κ) f 2 (x)+(2 4 m ) ( f(x))2 +2 f 2 (x) + 2 1 w xy (f(x) f(y)) w yz [f(z) f(y)] d y = 2κ f 2 (x)+(2 4 m )[ λf(x)]2 + 2 w xy (f(x) f(y)) ( λf(y)) = 2κ f 2 (x)+(2 4 m )λ2 f 2 (x) + 2 w xy (f(x) f(y))( λf(y)+λf(x) λf(x)) = (2λ 2κ) f 2 (x) 4 m λ2 f 2 (x). ( )f 2 (x) = 1 w xy [f 2 (x) f 2 (y)] = 2 w xy f(x)[f(x) f(y)] 1 w xy [f(x) f(y)] 2 = 2λf 2 (x) f 2 (x). Combining the above inequalities, we have, for any positive α, the following: ( )( f 2 (x)+αλf 2 (x)) (2λ 2κ) f 2 (x) 4 m λ2 f 2 (x)+2αλ 2 f 2 (x) αλ f 2 (x) = (2λ αλ 2κ) f 2 (x)+(2α 4 m )λ2 f 2 (x). We choose a vertex v, which maximizes the expression f 2 (x)+αλf 2 (x) 5

over all x V. Then we have This implies 0 ( )( f 2 (v)+αλf 2 (v)) (2λ αλ 2κ) f 2 (v)+(2α 4 m )λ2 f 2 (v). for α > 2 2κ λ. f 2 (v) 2α 4 m (α 2)λ+2κ λ2 f 2 (v) Therefore for every x V, we have f 2 (x)+αλf 2 (x) f 2 (v)+αλf 2 (v) as desired. From Lemma 2.3, we can choose α = 4 2κ λ Theorem 3.2, we have 2α 4 m (α 2)λ+2κ λ2 f 2 (v)+αλf 2 (v) (α2 4 m )λ+2κα (α 2)λ+2κ λ max z V f2 (z) 0. By substituting into the statement of Theorem 3.3. Suppose a finite connected graph G satisfies the CD(m,κ) and f V R is a harmonic eigenfunction of Laplacian with nontrivial eigenvalue λ. Then the following inequality holds for all x V f 2 (x) ( (8 2 m )λ 4κ) max z V f2 (z). If G is a non-negative Ricci curvature graph, i.e. κ = 0. Then we have the following result: Corollary 3.4. Suppose a finite connected graph G satisfies CD(m,κ) and f V R is a harmonic eigenfunction of Laplacian with nontrivial eigenvalue λ. Then the following Harnack inequality holds for all x V f 2 (x) (8 2 m ) λ max z V f2 (z). We can use the Harnack inequality in Theorem 3.3 to derive the following eigenvalue estimate. Theorem 3.5. Suppose a finite connected graph G satisfies CD(m,κ) and λ is a non-zero eigenvalue of Laplace operator on G. Then λ 1+4κdD2 d (8 2 m ) D2 where d is the maximum degree and D denotes the diameter of G. 6

Proof: Let f be the eigenfunction of Laplacian with eigenvalue λ 0. That is, for all x V, ( )f(x) = λf(x), Then f(x) = 1 ( )f(x) λ x V x V = 1 w xy [f(x) f(y)] λ = 0. x V We can assume that supf(z) = 1 > inf f(z) = β, z V z V where β < 0. Choose x 1,x t V such that f(x 1 ) = sup z V f(z) = 1, f(x t ) = inf z V f(z) = β < 0 and let x 1, x 2,...,x t be the shortest path connecting x 1 an t, where x i x i+1. Then n D where D is the diameter of G. From the Corrolalry 3.4 we have [f(x i 1 ) f(x i )] 2 +[f(x i ) f(x i+1 )] 2 d f 2 (x i ) d ((8 2 m ) λ 4κ). Therefore t 1 [f(x i ) f(x i+i )] 2 dd ((4 1 m )λ 2κ). i=0 On the other hand, by using the Cauchy-Schwarz inequality we have t 1 [f(x i ) f(x i+1 )] 2 1 D (f(x t) f(x 1 )) 2 i=0 Together we have This completes the proof of Theorem 3.5. 1 D λ 1+2κdD2 d (4 1 m ) D2. Remark 3.6. We note that Theorem 3.5 gives an eigenvalue lower bound for graphs with nonnegative Ricci curvature κ satisfying κ > 1 2dD 2. As an immediately consequence, we have the following: 7

Corollary 3.7. Suppose a finite connected graph G satisfies CD(m,0) and λ is a non-zero eigenvalue of Laplace operator on G. Then λ 1 d (4 m ) D 2 where d is the maximum degree and D denotes the diameter of G. Chung and Yau(see [4]) proved that λ 1 d 8 D 2 for Ricci flat graphs. Since Ricci flat graphs satisfies CD(, 0), our results extend and strengthen the results in [4]. References [1] D. Bakry and M. Emery, Diffusions hypercontractives, Sem. de Prob.XIX, Lecture Notes in Math. Springer-Verlag, 1123,(1985), 177-206. [2] Fan R. K., Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, Number 92, (1997),American Mathematical Society. [3] Fan Chung, Yong Lin and Yuan Liu, Curvature Aspects of Graphs, preprint. [4] Fan R. K, Chung and S. T. Yau, A Harnack inequality for homogeneous graphs and subgraphs, Communication in Analysis and Geometriy, 2. (1994), 628-639. [5] Fan R. K, Chung and S. T. Yau, Logarithmic Harnack inequalities, Mathematics Research Letters, 3, (1996),793-812. [6] Y. Lin and S. T. Yau, Ricci Curvature and eigenvalue estimation on Locally Finite Graphs, Mathematics Research Letters, Vol.17, No.2, (2010), 345-358. [7] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal. 256 (2009), no 3, 810 864. 8