Diurnal variation of tropospheric temperature at a tropical station

Similar documents
Retrieval of the vertical temperature profile of atmosphere from MST radar backscattered signal

Seasonal variation of vertical eddy diffusivity in the troposphere, lower stratosphere and mesosphere over a tropical station

The bottomside parameters B0, B1 obtained from incoherent scatter measurements during a solar maximum and their comparisons with the IRI-2001 model

Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma.

Estimation of turbulence parameters in the lower atmosphere from MST radar observations

Weather radar refractivity variability in the boundary layer of the atmosphere

A new simple recursive algorithm for finding prime numbers using Rosser s theorem

Case report on the article Water nanoelectrolysis: A simple model, Journal of Applied Physics (2017) 122,

Dispersion relation results for VCS at JLab

Can we reduce health inequalities? An analysis of the English strategy ( )

Quantum efficiency and metastable lifetime measurements in ruby ( Cr 3+ : Al2O3) via lock-in rate-window photothermal radiometry

From Unstructured 3D Point Clouds to Structured Knowledge - A Semantics Approach

Impulse response measurement of ultrasonic transducers

Vibro-acoustic simulation of a car window

SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH

Easter bracelets for years

Analysis of Boyer and Moore s MJRTY algorithm

The influence of the global atmospheric properties on the detection of UHECR by EUSO on board of the ISS

Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

Towards an active anechoic room

Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series

Theoretical calculation of the power of wind turbine or tidal turbine

Territorial Intelligence and Innovation for the Socio-Ecological Transition

On the Earth s magnetic field and the Hall effect

RHEOLOGICAL INTERPRETATION OF RAYLEIGH DAMPING

Passerelle entre les arts : la sculpture sonore

Ion energy balance during fast wave heating in TORE SUPRA

Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

Thomas Lugand. To cite this version: HAL Id: tel

On size, radius and minimum degree

Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

L institution sportive : rêve et illusion

AC Transport Losses Calculation in a Bi-2223 Current Lead Using Thermal Coupling With an Analytical Formula

On the longest path in a recursively partitionable graph

Antipodal radiation pattern of a patch antenna combined with superstrate using transformation electromagnetics

Soundness of the System of Semantic Trees for Classical Logic based on Fitting and Smullyan

On Symmetric Norm Inequalities And Hermitian Block-Matrices

On the beam deflection method applied to ultrasound absorption measurements

Natural convection of magnetic fluid inside a cubical enclosure under magnetic gravity compensation

Water Vapour Effects in Mass Measurement

STATISTICAL ENERGY ANALYSIS: CORRELATION BETWEEN DIFFUSE FIELD AND ENERGY EQUIPARTITION

IMPROVEMENTS OF THE VARIABLE THERMAL RESISTANCE

Completeness of the Tree System for Propositional Classical Logic

b-chromatic number of cacti

Solubility prediction of weak electrolyte mixtures

Ultra low frequency pressure transducer calibration

A new approach of the concept of prime number

Lorentz force velocimetry using small-size permanent magnet systems and a multi-degree-of-freedom force/torque sensor

MODal ENergy Analysis

Control of an offshore wind turbine modeled as discrete system

Sound intensity as a function of sound insulation partition

Basic concepts and models in continuum damage mechanics

A Study of the Regular Pentagon with a Classic Geometric Approach

A non-commutative algorithm for multiplying (7 7) matrices using 250 multiplications

LAWS OF CRYSTAL-FIELD DISORDERNESS OF Ln3+ IONS IN INSULATING LASER CRYSTALS

Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5 N, 79.2 E)

Comment on: Sadi Carnot on Carnot s theorem.

Uniform and gradually varied flows in compound channel versus free mixing layers

A remark on a theorem of A. E. Ingham.

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Modeling of Electromagmetic Processes in Wire Electric Discharge Machining

New Basis Points of Geodetic Stations for Landslide Monitoring

Multiple sensor fault detection in heat exchanger system

DEM modeling of penetration test in static and dynamic conditions

A non-linear simulator written in C for orbital spacecraft rendezvous applications.

There are infinitely many twin primes 30n+11 and 30n+13, 30n+17 and 30n+19, 30n+29 and 30n+31

Nonlocal computational methods applied to composites structures

Spatial representativeness of an air quality monitoring station. Application to NO2 in urban areas

Inter ENSO variability and its influence over the South American monsoon system

Exogenous input estimation in Electronic Power Steering (EPS) systems

Simulation and measurement of loudspeaker nonlinearity with a broad-band noise excitation

Entropies and fractal dimensions

Numerical Modeling of Eddy Current Nondestructive Evaluation of Ferromagnetic Tubes via an Integral. Equation Approach

Explanatory notes on the bioclimate maps of the Western Ghats

Determination of absorption characteristic of materials on basis of sound intensity measurement

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method

Full-order observers for linear systems with unknown inputs

On Newton-Raphson iteration for multiplicative inverses modulo prime powers

The status of VIRGO. To cite this version: HAL Id: in2p

Comments on the method of harmonic balance

Heavy Metals - What to do now: To use or not to use?

On Solving Aircraft Conflict Avoidance Using Deterministic Global Optimization (sbb) Codes

VHF radar echoes in the vicinity of tropopause during the passage of tropical cyclone: First observations from the Gadanki MST radar

The sound power output of a monopole source in a cylindrical pipe containing area discontinuities

Numerical Simulation of MHD Processes in the Technology of Non-crucible Induction Melting of Titanium Alloys

Exact Comparison of Quadratic Irrationals

FORMAL TREATMENT OF RADIATION FIELD FLUCTUATIONS IN VACUUM

Mirage detection for electrochromic materials characterization. Application to iridium oxide films

Some approaches to modeling of the effective properties for thermoelastic composites

Some explanations about the IWLS algorithm to fit generalized linear models

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

The Learner s Dictionary and the Sciences:

Best linear unbiased prediction when error vector is correlated with other random vectors in the model

The CO-H2 conversion factor of diffuse ISM: Bright 12CO emission also traces diffuse gas

A Slice Based 3-D Schur-Cohn Stability Criterion

A numerical analysis of chaos in the double pendulum

The beam-gas method for luminosity measurement at LHCb

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

Widely Linear Estimation with Complex Data

Transcription:

Diurnal variation of tropospheric temperature at a tropical station K. Revathy, S. R. Prabhakaran Nayar, B. V. Krishna Murthy To cite this version: K. Revathy, S. R. Prabhakaran Nayar, B. V. Krishna Murthy. Diurnal variation of tropospheric temperature at a tropical station. Annales Geophysicae, European Geosciences Union, 2001, 19 (8), pp.1001-1005. <hal-00316893> HAL Id: hal-00316893 https://hal.archives-ouvertes.fr/hal-00316893 Submitted on 1 Jan 2001 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Annales Geophysicae (2001) 19: 1001 1005 c European Geophysical Society 2001 Annales Geophysicae Diurnal variation of tropospheric temperature at a tropical station K. Revathy 1, S. R. Prabhakaran Nayar 2, and B. V. Krishna Murthy 2 1 Department of Computer Science, University of Kerala, Kariavattom, Trivandrum 695581, India 2 Department of Physics, University of Kerala, Kariavattom, Trivandrum 695581, India Received: 9 October 2000 Revised: 6 July 2001 Accepted: 6 July 2001 Abstract. The vertical velocity in the troposphere-lower stratosphere region measured using MST radar has been utilized to evaluate the temperature profile in the region. The diurnal variation of the tropospheric temperature on one day in August 1998 at the tropical station Gadanki (13.5 N, 79.2 E) has been studied using the MST radar technique. The diurnal variation of the temperature revealed a prominent diurnal variation with the peak in the afternoon hours increasingly delayed in altitude. The tropopause temperature and altitude exhibited a clear diurnal cycle. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere - composition and chemistry; instruments and technique) 1 Introduction The MST radar operating in a VHF band is a very powerful tool to explore the atmospheric dynamics of the lower and middle atmosphere. It has the capability of measuring the wind in the troposphere and the lower stratosphere with time scales of a few tens of seconds. These measurements provide a powerful means of determining the spectra of short period fluctuations in the atmosphere and the Brunt-Vaisala frequency. The possibility of the derivation of temperature profile from the MST radar observation of vertical wind has been pointed out by Röttger (1986). Following this, Revathy et al. (1996) have developed a method for determining tropospheric and lower stratosheric temperature from the MST radar observations of vertical wind with good altitude and temporal resolution. The knowledge of atmospheric temperature variation with altitude is very important in the study of atmospheric turbulence and atmospheric stability. In this work, we have utilized the MST radar observations of vertical wind fluctuation to evaluate the temperature profile of the troposphere and lower stratosphere region. By evaluating the temperature profiles at regular intervals of time, the diurnal Correspondence to: K. Revathy (srp@md2.vsnl.net.in) variation of temperature in the troposphere and stratosphere and the features of the tropopause are also evaluated. 2 Measurement of vertical velocity using MST radar The Mesosphere Stratosphere Troposphere (MST) radar at Gadanki (13.5 N, 79.2 E) is a highly sensitive, pulse coded VHF phased array at 53 MHz and with an average power aperture product of 5 10 7 W m 2 and altitude resolution of 150 m in the vertical direction. The radar system details are given in Rao et al. (1995). The radar provides the backscattered signals in the vertical direction in the altitude range 3.75 to 30 km with good SNR. The data from the I and Q channels of the MST radar are usually coherently integrated for many pulses. The inter-pulse period and the coherent integration will limit the bandwidth of the observation window. The time series of data from I and Q channels are subjected to an FFT analysis and the Doppler spectra are obtained at regular intervals. From the spectrum output, the spectral moments are evaluated. The first moment provides the mean Doppler frequency from which vertical wind velocity can be evaluated. Thus a time series of vertical wind velocity sampled at 46 seconds is obtained in the altitude range of 3.75 km to 30.6 km at intervals of 150 m. These time series are subjected to FFT to obtain the spectra and from these spectra, the spectral peak corresponding to the B-V frequency is identified. This B-V frequency which gives the gradient of the temperature is used to derive the temperature profile. Typical sample spectra of vertical velocity at an altitude of 5.1 km using the vertical velocity data sampled at a 46 s interval during 2:55 LT to 21:56 LT on 24 August 1998 is shown in Fig. 1. In order to investigate the diurnal variation of tropospheric temperature, the spectral data is collected on every alternate hour during 24 25 August 1998, thus providing twelve sets of data samples which enabled us to study the diurnal evolution of the temperature profiles. In the diurnal cycles, the radar is operated in the temperature mode, i.e. in a single beam mode by continuously observing the vertical wind for

1002 K. Revathy et al.: Diurnal of tropospheric temperature 0.01 Power(arbitrary units) 0.008 0.006 0.004 0.002 0 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 Frequency(Hz) Fig. 1. Typical vertical velocity spectrum at an altitude of 5.1 km during 20:55 to 21:56 LT on 24 August 1998. about one hour. Under this scheme, the vertical wind data is available at a 46 second interval with about 80 cycles of vertical beam observation which is sufficient for the evaluation of the vertical wind temporal spectrum. This observation is preceded and followed by the operation of the MST radar in the five beam mode to evaluate the background wind in order to obtaining an impression of the atmospheric conditions. 3 Evaluation of temperature The spectra of vertical wind velocity depicted in Fig. 1 show a typical pattern with a peak at the Brunt-Vaisala frequency (Röttger, 1986; Scheffler and Liu, 1985), a steep decrease in amplitude in the high frequency side, and a fairly shallow decrease in amplitude in the low frequency side. Based on earlier studies by Röttger (1986), Revathy et al. (1996) developed a method for determining tropospheric and lower stratospheric temperature from MST radar observations of vertical wind. In this method, using vertical wind velocity data (w) sampled at 46 second intervals for a duration of one hour, the temporal spectrum of w is obtained. From the spectrum, the Brunt-Vaisala (B-V) frequency (N) is determined by identifying the spectral peak corresponding to N based on the following criteria: 1. The spectral peak at the B-V frequency is the highest and most prominent; 2. The spectrum on the high frequency side of the B-V frequency spectral peak shows a steep decrease with no prominent spectral peaks. Four typical profiles of angular Brunt-Vaisala frequency (ω N ) are shown in Fig. 2. The B-V frequency N(h) at altitude h is related to the temperature T(h) by N(h) 2 = g T (h) [ T (h) h ] + Ɣ (1) Fig. 2. Altitude variation of ω N in the troposphere-stratosphere region on 25 August 1998 during the time intervals (a) 00:57 to 01:58 (b) 06:55 to 07:56 (c) 09:00 to 10:01 and (d) 22:49 to 23:50 on 24 August 1998. or T (h) h = [ ] N(h) 2 T (h) Ɣ g where g is the acceleration due to gravity, h is the altitude and T is the adiabatic lapse rate (dry). Equation (2) is integrated to obtain T(h) from N(h) which is determined from the temporal spectra of vertical wind at different altitudes with boundary value T o at h o (the lowest altitude at which N is obtained). T o is obtained from the ground temperature value and the iterative method described in Revathy et al. (1996). From the measured ground temperature, the temperature at 3.75 km is obtained assuming a lapse rate of 6 K/km which is an average value of the lapse rate in the lower troposphere that is applicable for the Indian tropical region (Sasi, 1984). This value of temperature at 3.75 km is used as a reference temperature in Eq. (2) to derive the temperature profile, from which the lapse rate in the altitude range of 3.75 km to 5 km is obtained and used to calculate the temperature at 3.75 from the ground value. This new reference value of temperature is used in Eq. (2) to derive one more the temperature profile. The limitations of this method have been discussed in detail in Revathy et al. (1997). It is basically applicable under convectively stable conditions and when the wind and wind shear are not very high. The horizontal wind introduces a Doppler shift to the gravity waves. However, as we do not know the phase and speed of the gravity wave, we cannot estimate the Doppler shift. The effect of this Doppler shift is to render the temporal spectrum of the vertical wind (from which the BV frequency is obtained) broaden around the BV frequency for a short period gravity wave. This makes the estimate of the BV frequency difficult. But in our analysis high horizontal winds ( 20 m/s) are not encountered and so the effect would be insignificant. Since we could estimate the BV frequency in almost all cases, convective instability was (2)

K. Revathy et al.: Diurnal of tropospheric temperature 1003 Fig. 3. Twelve vertical profiles of temperature during 10:44 LT on 24 August to 10:01 on 25 August 1998 at regular two hours intervals.

1004 K. Revathy et al.: Diurnal of tropospheric temperature 18.0 17.5 Altitude(km) 17.0 16.5 $OWLWXGHNP 16.0 210 10 15 20 1 6 11 /RFDO7LPHKUV Temperature(K) 205 200 195 190 185 10 15 20 Local Time 1 6 11 Fig. 4. Diurnal evolution of the vertical profile of temperature during 24 25 August 1998. Fig. 5. Temporal variation of tropopause altitude and temperature during 11:00 LT on 24 August to 10:00 LT on 25 August 1998. not encountered. Only convectively stable conditions prevailed and the BV frequency itself is a measure of convective stability. The MST radar is operated with the antenna beam pointing in the vertical direction in order to obtain the vertical wind velocity at intervals of 46 s for a duration of 60 minutes. Such 60 minute observations are carried out 12 times on 24 25 August 1998 at roughly 2 hour intervals. Each such observation is preceded by 10 minutes of radar operation with 5 beams to determine the background wind profile. It is observed that the horizontal wind is quite low, not exceeding 20 m/s on the day of observation. Each 60 minute data of vertical wind from the above observation is subjected to an FFT analysis to obtain the Brunt-Vaisala frequency profiles (Fig. 2) and hence, temperature profiles as described above. The errors involved in the determination of temperature have been studied by Revathy et al. (1998). The twelve profiles of atmospheric temperature at the troposphere-stratosphere region from 10:37:10 LT, 24 August to 10:07:35 LT, 25 August 1998 at intervals of roughly 2 hours are depicted in Fig. 3 in the 3.75 km to 25 km altitude region. 4 Diurnal variation of the vertical profiles of temperature during 24 25 August 1998 The profiles are modulated by fluctuations which are more prominent in the lower stratosphere than in the troposphere. The tropopause level appears to be clearly defined in almost all the profiles with a sharp minimum in temperature. To study the diurnal variation of temperature at each height, the temperature data is exhibited as contours in Fig. 4. It is seen that the temperature below 16 km (troposphere) exhibits a prominent peak, around 16 hours. The peak is quite broad and appears to be delayed with increasing height. It is wellknown that the surface temperature is a maximum at around 14 hours due to the solar heating diurnal cycle (especially in the tropics). How the diurnal variation of the heating of the surface and the troposphere can affect this observed diurnal temperature variation needs to be subsequently investigated. With the aim of seeing the diurnal variation of the tropopause temperature and height, the tropopause height is determined for each profile as the height of minimum temperature. The tropopause temperature and heights obtained are shown in Fig. 5. The tropopause temperature reveals a prominent diurnal cycle with broad maximum and minimum at 15:00 and 01:00, respectively. The tropopause height, in general, shows variation opposite to that of the tropopause temperature. The tropopause (temperature) diurnal cycle appears to respond directly to surface heating (solar insolation), as hypothesized by Reid and Gage (1981). 5 Conclusion The study of the diurnal cycle of tropospheric temperature revealed the following:

K. Revathy et al.: Diurnal of tropospheric temperature 1005 1. Tropospheric temperatures exhibit a prominent diurnal variation with one peak occurring at 16:00 LT. The observed diurnal cycle appears to be driven by surface heating caused by solar insolation; 2. The occurrence of the afternoon peak is increasingly delayed with height; 3. The tropopause temperature exhibits a prominent diurnal cycle with a peak around 15:00 and appears to respond to surface heating. Acknowledgement. This work was carried out with the financial support from Department of Science and Technology, Government of India. Topical Editor J.-P. Duvel thanks J. Röttger for his help in evaluating this paper. References Rao, P. B., Jain, A. R., Kishore, P., Balamuralidhar, P., Damle, S. H., and Viswanathan, G., Indian MST radar 1. System description and sample vector wind measurements in ST mode, Radio Science, 30, 1125 1138, 1995. Reid, G. C. and Gage, K. S., On the annual variation in height of the tropical tropopause, J. Atmos. Sci., 38, 1928 1938, 1981. Revathy, K., Prabhakaran Nayar, S. R., and Krishnamurthy, B. V., Deduction of temperature profile from MST radar observation of vertical wind, Geophys. Res. Letters, 19, 326 342, 1996. Revathy, K., Prabhakaran Nayar, S. R., and Krishnamurthy, B. V., Troposphere and lower stratosphere temperature profile and its evolution from MST radar observations, STEP Handbook, Ed.: Belva Edwards, Illinois, USA, 180 183, 1997. Revathy, K., Prabhakaran Nayar, S. R., and Krishnamurthy, B. V., Estimation of error in the determination of temperature using MST radar, Geophys. Res. Letters, 19, 326 342, 1996, Indian J. Radio and Space Sci., 27, 150 154, 1998. Röttger, J., Determination of Brunt-Vaisala frequency from vertical velocity spectra, MAP Handbook, 20, 299 312, 1986. Sasi, M. N., A reference atmosphere for the Indian equatorial zone, Indian J. Radio and Space Sci., 23, 150 154, 1994. Scheffler, A. O. and Liu, C. H., On observation of gravity wave spectra in the atmosphere by using MST radars, Radio Sci., 20, 1309 1322, 1985. Scheffler, A. O. and Liu, C.H., The effects of Doppler shift on gravity wave spectra observed by MST radar, J. Atmos. Terr. Phys, 48, 1125 1231, 1986.