Collision Theory Gizmo ExploreLearning.com

Similar documents
Student Exploration: Collision Theory

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes

Equilibrium and Concentration

Factors Affecting the Rate of Chemical Reactions

Activation Energy is the minimum amount of energy needed to start a chemical reaction.

Student Exploration: Cell Energy Cycle

2-4 Chemical Reactions and Enzymes

Biology Slide 1 of 34

Chemical reactions. C2- Topic 5

Mass and Particle Relationships

Student Exploration: Energy of a Pendulum

Student Exploration: Chemical Changes

2 4 Chemical Reactions and Enzymes

STEMscopedia: PHYSICAL AND CHEMICAL PROPERTIES AND CHANGES 8P1CD

Student Exploration: Cell Energy Cycle

Student Exploration: Titration

Student Exploration: Food Chain

The Chemistry of Respiration and Photosynthesis

Number 1 What is a chemical reaction?

Student Exploration: Bohr Model of Hydrogen

What does rate of reaction mean?

SCIENCE 9 CONCEPT 4 CHEMICAL REACTIONS

Student Exploration: Colligative Properties

Shifting Reactions A

Student Exploration: Calorimetry Lab

Chemical Symbols & Formulas

Chemical Reactions and Equations

Student Exploration: Cell Division

Shifting Reactions B

Catalysts. Lab Section. Log on to the Internet. Type the following address into the location-input line of your browser:

Changing Reaction Rates

FACTFILE: GCE CHEMISTRY

Conducting Energy and Heat. Energy Likes to Move. Radiating Energy

Student Exploration: Free-Fall Laboratory

Student Exploration: Titration

Student Exploration: Air Track

Student Exploration: Seasons in 3D

Photosynthesis: Limiting Factors

Student Exploration: Diffusion

Bond Enthalpy and Activation Energy

Student Exploration: Weathering

What does rate of reaction mean?

Burning a Hydrocarbon II

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Acid/Base Interactions

1º ESO UNIT 4: Chemical and physical changes. Susana Morales Bernal

Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions

Reactants and Products

Chemical Reactions and Equations

Vocabulary: covalent bond, diatomic molecule, Lewis diagram, molecule, noble gases, nonmetal, octet rule, shell, valence, valence electron

Student Exploration: Bohr Model: Introduction

Reaction Rates and Equilibrium

Physical or Chemical Change?

Performance Task: Concentration vs. Time

Chemical Kinetics Review Sheet

Chapter 3. Chemistry of Life

Student Exploration: Cell Energy Cycle

Unit 4, Lesson 03: Collision Theory and the Rates of Chemical Reactions Homework

1. Gas Reactions Page 4 2. Measuring the Speed Page 6 3. Increasing the Speed Page Making Foam Page Putting Out a Fire Page 18

Student Exploration: Uniform Circular Motion

MiSP CHEMICAL REACTIONS, L3 Teacher Guide. Introduction

Acid/Base Classifications

Atoms. - Proton - Neutron. - Electron

Section 1 Forming New Substances

Student Exploration: Sled Wars

Chapter 17: Chemical Reactions

4 Energy and Rates of Chemical Reactions

5. Researching the properties of particular materials and understand why they are used for particular products.

Student Exploration: 3D Eclipse

2 4 Chemical Reactions and Enzymes Slide 1 of 34

Chemistry of Life Essential Questions

2 4 Chemical Reactions

Name: Block : Date: (Textbook Chapter 9.4) Rate of reaction or reaction rate is how quickly or slowly reactants turn into products.

Student Exploration: Inclined Plane Sliding Objects

Student Exploration: Temperature and Particle Motion

Unit 6 Kinetics and Equilibrium.docx

INPUT~ Explore It! Station Directions: This is one of the four INPUT stations. They may be completed in any order.

Factors Affecting the Rate of Chemical Reactions

Factors Affecting the Rate of Chemical Reactions

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19

Test Review Unit 3_2 Chemical reactions. Fundamentals Identify the letter of the choice that best completes the statement or answers the question.

How many grams of ethylene glycol must be added to 6.00 kg of water to lower its freezing point to C? ETHYLENE GLYCOL:

Metabolism and energy

Physical & Chemical PROPERTIES

Q1. A student investigated the rate of reaction between marble and hydrochloric acid.

The purpose of this lab is to investigate phases of matter, temperature, and heat energy.

Unit 2.3: Water, Acids, and Bases

Key Performance Task

Chemical Reactions. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved.

The rate of a chemical reaction is the speed at which the reactants are used up or the speed at which new products are formed.

Chapter Two (Chemistry of Life)

Gummy Bear Demonstration:

Review # 3 Matter. Copyright Cengage Learning. All rights reserved. 3 1

What s the Matter? An in depth look at matter.

Chapter 12. Chemical Kinetics

Chemical Reactions Chapter 2 L book pages L44 - L73. examples?

CHAPTER 9: Rate of Reaction

Chemistry Final Study Guide KEY. 3. Define physical changes. A change in any physical property of a substance, not in the substance itself.

The masses of reactants and products are equal.

Student Exploration: Seasons: Earth, Moon, and Sun

Transcription:

Names: Period: Date: Collision Theory Gizmo ExploreLearning.com Vocabulary: activated complex, catalyst, chemical reaction, concentration, enzyme, half-life, molecule, product, reactant, surface area Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1) Suppose you added a spoonful of sugar to hot water and another to ice-cold water. Which type of water will cause the sugar to dissolve more quickly? 2) Suppose you held a lighted match to a solid hunk of wood and another match to a pile of wood shavings. Which form of wood will catch fire more easily? Gizmo Warm-up: A chemical reaction causes the chemical compositions of substances to change. Reactants are substances that enter into a reaction, and products are substances produced by the reaction. The Collision Theory Gizmo allows you to experiment with several factors that affect the rate at which reactants are transformed into products in a chemical reaction. You will need blue, green, and orange markers or colored pencils for the first part of this activity. 1) Look at the key at the bottom of the SIMULATION pane. In the space below, draw the two reactants and two products of this chemical reaction. (Use colored pencils) Reactants: Products: 2) Click Play. What do you see?

Question A: How does temperature affect the rate of a chemical reaction? 1) Observe: Select the ANIMATION tab. View the animation with No catalyst selected. What do you see? When two reactant molecules meet, they form a temporary structure called an activated complex. The activated complex breaks up into the product molecules. 2) Observe: Return to the CONTROLS pane. Set the Temperature to 0 C and the Simulation speed to its maximum setting. Click Play. A. Describe the motions of the molecules. B. Now set the Temperature to 200 C. How does increasing the temperature affect the motions of the molecules? C. What do you notice about the chemical reaction at the higher temperature? 3) Interpret: Select the GRAPH tab. Click the zoom out button ( ) until you can see the whole graph. What does this graph show? 4) Predict: How do you think temperature will affect the rate of a chemical reaction? 5) Gather Data: Click Reset. A useful way to compare reaction rates is to record the time required for half of the reactants to react, called the half-life of the reaction. With the Temperature set to 200 C, click Play. Click Pause when the number of reactant molecules is 10. Record the half-life time for each temperature on the data table to the right: Temperature 50 ºC 100 ºC 150 ºC 200 ºC

6) Analyze: What do your results indicate? 7) Draw conclusions: For two molecules to react, they must collide at just the right angle and with enough energy to break the original bonds and form new ones. Based on these facts, why does the reaction tend to go more quickly at higher temperatures? 8) Apply: Paper must be heated to 234 C to begin reacting with oxygen. This can be done by putting the paper over a flame. Why do you think the paper must be heated to start burning? 9) Introduction: Reaction rates are also influenced by surface area and concentration. The surface area of a solid is a measure of how much of the solid is exposed to other substances. The concentration of a substance is a measure of how many molecules of that substance are present in a given volume. Question B: How do surface area and concentration affect reaction rates? 1) Observe: Change the Surface area from Minimum to Maximum. How does this change the amount of Reactant B molecules that are exposed to Reactant A? 2) Predict: How do you think increasing the surface area will affect the rate of the reaction? 3) Gather data: Set the Reactant concentration to 2.0 mol/l. Use the Gizmo to measure the half-life of the reaction for each surface area setting. (PLEASE NOTE: There will now be 20 reactant molecules left at the half-life.) Surface Area Minimum Maximum 4) Analyze: What do your results indicate?

5) Explain: Why does the reaction proceed more quickly when the surface area is increased? 6) Observe: Click Reset. Move the Reactant concentration slider back and forth. What do you notice? 7) Predict: How will increasing the reactant concentration affect the rate of the reaction? Why? 8) Gather data: Make sure the Temperature is 200 C and the Surface area is Maximum. Use the Gizmo to measure the half-life for each given reactant concentration. (Note that the number of reactant molecules changes with each concentration.) Concentration 0.4 mol/l 0.8 mol/l 1.2 mol/l 1.6 mol/l 2.0 mol/l 9) Apply: Hydrochloric acid reacts with the mineral calcite to produce carbon dioxide gas, water, and calcium chloride. Based on what you have learned in activity A and activity B, what are three things you could do to make the reaction occur more quickly? Introduction: A catalyst is a substance that helps a chemical reaction to proceed. The catalyst molecules are not changed by the reaction and can be reused over and over again. Question C: How do catalysts affect the rate of a chemical reaction? 1) Observe: Select the ANIMATION tab. Select With catalyst, and observe. A. What do you see? B. Why do you think the shape of a catalyst is important?

Many catalysts have a special shape that allows them to bind to specific reactant molecules. 2) Predict: How do you think catalysts will affect the rate of a chemical reaction? 3) Gather data: On the CONTROLS pane, set the Reactant concentration to 2.0 mol/l, the Surface area to Maximum, and the Temperature to 50 C. Measure the half-life for each given catalyst concentration. Catalyst Concentration 0.00 mol/l 0.05 mol/l 0.10 mol/l 0.15 mol/l 4) Analyze: What do your results indicate? 5) Explore: Set the Catalyst concentration to 0.00 mol/l and the Temperature to 0 C. Click Play, wait for 10 minutes of simulated time, and click Pause. A. What happens? B. Click Reset, set the Catalyst concentration to 0.25 mol/l, and click Play. After 10 simulated minutes, click Pause. What happens now? C. Why do you think the catalysts allowed the chemical reaction to take place at 0 C? 6) Draw conclusions: What is the usefulness of catalysts? 7) Apply: Most of the chemical reactions inside your body rely on protein catalysts called enzymes to take place. For example, the enzyme pepsin helps to break down protein molecules in your stomach. What might happen if your stomach stopped producing pepsin?