The Devices. Jan M. Rabaey

Similar documents
The Devices. Devices

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Device Models (PN Diode, MOSFET )

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Device Models (PN Diode, MOSFET )

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices: MOS Transistors

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Lecture 4: CMOS Transistor Theory

MOS Transistor I-V Characteristics and Parasitics

MOSFET: Introduction

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

MOS Transistor Theory

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Integrated Circuits & Systems

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

ECE 497 JS Lecture - 12 Device Technologies

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Semiconductor Physics fall 2012 problems

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 4 Field-Effect Transistors

EE5311- Digital IC Design

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOS Transistor Properties Review

CMOS Inverter (static view)

Lecture 3: CMOS Transistor Theory

Spring Semester 2012 Final Exam

FIELD-EFFECT TRANSISTORS

MOS Transistor Theory

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Metal-oxide-semiconductor field effect transistors (2 lectures)

6.012 Electronic Devices and Circuits

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Semiconductor Physics Problems 2015

Chapter 2 MOS Transistor theory

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

VLSI Design and Simulation

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 5: CMOS Transistor Theory

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

VLSI Design The MOS Transistor

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Chapter 5 MOSFET Theory for Submicron Technology

Lecture 12: MOSFET Devices

The Physical Structure (NMOS)

6.012 Electronic Devices and Circuits Spring 2005

ECE 342 Electronic Circuits. 3. MOS Transistors

Lecture 12: MOS Capacitors, transistors. Context

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

VLSI Design I; A. Milenkovic 1

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

6.012 Electronic Devices and Circuits

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Bipolar Junction Transistor (BJT) - Introduction

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Nanoscale CMOS Design Issues

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY

EE105 - Fall 2006 Microelectronic Devices and Circuits

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Long Channel MOS Transistors

Introduction and Background

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Appendix 1: List of symbols

Device Physics: The Bipolar Transistor

FIELD EFFECT TRANSISTORS:

Devices. chapter Introduction. 1.2 Silicon Conductivity

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

THE INVERTER. Inverter

Lecture 04 Review of MOSFET

EE105 - Fall 2005 Microelectronic Devices and Circuits

Practice 3: Semiconductors

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

(e V BC/V T. α F I SE = α R I SC = I S (3)

Section 12: Intro to Devices

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EECS130 Integrated Circuit Devices

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Transcription:

The Devices Jan M. Rabaey

Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models for SPICE simulation Analysis of secondary and deep-sub-micron effects Future trends

The Diode B A Al SiO2 p n Cross-section of pn-junction in an IC process A Al A p n B B One-dimensional representation Digital Integrated Circuits diode symbol Devices

Depletion Region hole diffusion electron diffusion p n (a) Current flow. hole drift electron drift Charge Density - ρ + x Distance (b) Charge density. Electrical Field ξ x (c) Electric field. Potential V ψ 0 -W 1 W 2 x (d) Electrostatic potential.

Diode Current

Forward Bias p n (W 2 ) p n0 L p n p0 p-region -W 1 0 W 2 n-region x diffusion

Reverse Bias p n0 n p0 p-region -W 1 0 W 2 n-region x diffusion

Diode Types p n0 p n (x) x Short-base Diode (standard in semiconductor devices) W n p n (x) Long-base Diode p n0 W n x

Models for Manual Analysis V D + I D = I S (e V D/φ T 1) V D + + I D V Don (a) Ideal diode model (b) First-order diode model

Junction Capacitance

Diffusion Capacitance

Diode Switching Time R src V D V 1 V src I D V 2 t = 0 t = T Excess charge Space charge V D ON OFF ON Time

Secondary Effects 0.1 I D (A) 0 0.1 25.0 15.0 5.0 0 5.0 V D (V) Avalanche Breakdown

Diode Model R S + V D - I D C D

SPICE Parameters

The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor

Cross-Section of CMOS Technology

MOS transistors Types and Symbols D D G G S NMOS Enhancement D NMOS S Depletion D G G B PMOS S Enhancement S NMOS with Bulk Contact

Threshold Voltage: Concept S - V GS + G D n+ n+ n-channel p-substrate Depletion Region B

The Threshold Voltage

Current-Voltage Relations S V GS G V DS D I D n + V(x) + n + L x p-substrate B MOS transistor and its bias conditions

Current-Voltage Relations

Transistor in Saturation V GS G V DS > V GS - V T S D n+ - V GS - V T + n+

I-V Relation V DS = V GS -V T V GS = 5V I D (ma) 2 1 Triode Saturation V GS = 4V V GS = 3V Square Dependence 0.020 I D 0.010 Subthreshold Current V GS = 2V V GS = 1V 0.0 1.0 2.0 3.0 4.0 5.0 V DS (V) (a) I D as a function of V DS 0.0 V T 1.0 2.0 3.0 V GS (V) (b) I D as a function of V GS (for V DS = 5V). NMOS Enhancement Transistor: W = 100 µm, L = 20 µm

A model for manual analysis

Dynamic Behavior of MOS Transistor G C GS C GD S D C SB C GB C DB B

The Gate Capacitance

Average Gate Capacitance Different distributions of gate capacitance for varying operating conditions Most important regions in digital design: saturation and cut-off

Diffusion Capacitance

Junction Capacitance

Linearizing the Junction Capacitance Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

The Sub-Micron MOS Transistor Threshold Variations Parasitic Resistances Velocity Sauturation and Mobility Degradation Subthreshold Conduction Latchup

Threshold Variations V T Long-channel threshold Low V DS threshold L Threshold as a function of the length (for low V DS ) Drain-induced barrier lowering (for low L)

Parasitic Resistances G Polysilicon gate L D Drain contact V GS,eff S D W R S R D Drain

Velocity Saturation (1) υn (cm/sec) υ sat = 10 7 constant velocity Constant mobility (slope = µ) µn (cm 2 /Vs) 700 250 µ n0 E sat = 1.5 E (V/µm) 0 E t (V/µm) 100 (a) Velocity saturation (b) Mobility degradation

Velocity Saturation (2) 1.5 0.5 V GS = 5 I D (ma) 1.0 0.5 V GS = 4 V GS = 3 V GS = 2 Linea r Dependence I D (ma) V GS = 1 0.0 1.0 2.0 3.0 4.0 5.0 V DS (V) (a) I D as a function of V DS 0 0.0 1.0 2.0 3.0 V GS (V) (b) I D as a function of V GS (for V DS = 5 V). Linear Dependence on V GS

Sub-Threshold Conduction 10 2 10 4 Linear region ln(i D ) (A) 10 6 10 8 10 10 Subthreshold exponential region 10 12 0.0 V T 1.0 2.0 3.0 V GS (V)

Latchup V DD V DD p + n + n + p + p + n + R nwell p-source n-well R nwell R psubs p-substrate n-source R psubs (a) Origin of latchup (b) Equivalent circuit

SPICE MODELS Level 1: Long Channel Equations - Very Simple Level 2: Physical Model - Includes Velocity Saturation and Threshold Variations Level 3: Semi-Emperical - Based on curve fitting to measured devices Level 4 (BSIM): Emperical - Simple and Popular

MAIN MOS SPICE PARAMETERS

SPICE Parameters for Parasitics

SPICE Transistors Parameters

Fitting level-1 model for manual analysis I D Short-channel I-V curve Region of matching V GS = 5 V Long-channel approximation V DS = 5 V V DS Select k and λ such that best matching is obtained @ V gs = V ds = V DD

Technology Evolution

Bipolar Transistor E B C p + isolation n + p + p n-epitaxy n + p + n + buried layer p-substrate (a) Cross-sectional view. B E n + p n C (b) Idealized transistor structure.

Schematic Symbols and Sign Conventions I B + B + V BC V BE C E + I C V CE I E I B + B + V BC V BE C E + I C V CE I E (a) npn (b) pnp

Operations Modes

Forward Active Operation Carrier Concentration Depletion Regions E B C n b (0) p c0 p e0 n b0 x 0 W W B

Current Components E B C I E 1 I C 2 3 x I B electrons holes

Reverse Active Carrier Concentration E B C n b (W) p e0 n b (0) n b0 0 W p c0 x W B

Saturation Mode Carrier Concentration n b (0) E B C Q A n b (W) p e0 Q S n b0 0 W p c0 x W B

Cutoff Carrier Concentration E B C p e0 n b (0) n b0 n b (W) 0 W p c0 x W B

Bipolar Transistor Operation IC (ma) 0-0.25 I B =25 µa I B =50 µa I B =75 µa I B =100 µa Reverse Operation IC(mA) 15 10 5 Forward Operation Active I B =100 µa I B =75 µa I B =50 µa I B =25 µa -0.5-3.0-1.0 V CE (V) Saturation 0 0.0 2.0 V CE (V)

A Model for Manual Analysis B I B + V BE βfi B C B V BE(on) I B + βfi B C I B = I S (e V BE/φT 1) E E (a) Forward-active (b) Forward-active (simplified) B I B V BE(sat) + C + V CE(sat) E (c) Forward-saturation I C < β F I B

Capacitive Model for Bipolar Transistor C B Q R C bc C cs collector-substrate junction capacitance Q F C be S base charge E base-emitter base-collector junction capacitances

Junction Capacitances

Base Charge - Diffusion Capacitance

Bipolar Transistors - Secondary Effects Early Voltage Parasitic Resistances Beta Variations

Early Voltage I C Saturation Forward Active VBE3 V BE2 V BE1 V A V CE

Parasitic Resistance E B C p + r E n + p + p n + isolation n-epitaxy r B r C1 p + r C3 n + buried layer r C2 p-substrate

Beta Variations ln (I) I KF I C High Level Injection β F Recombination I B V BE (linear)

SPICE models for Bipolar

Main Bipolar Transistor SPICE Models

Spice Parameters for Parasitics

SPICE Transistor Parameters

Process Variations Devices parameters vary between runs and even on the same die! Variations in the process parameters, such as impurity concentration densities, oxide thicknesses, and diffusion depths. These are caused by nonuniform conditions during the deposition and/or the diffusion of the impurities. This introduces variations in the sheet resistances and transistor parameters such as the threshold voltage. Variations in the dimensions of the devices, mainly resulting from the limited resolution of the photolithographic process. This causes (W/L) variations in MOS transistors and mismatches in the emitter areas of bipolar devices.

Impact of Device Variations 2.10 2.10 Delay (nsec) 1.90 1.70 Delay (nsec) 1.90 1.70 1.50 1.10 1.20 1.30 1.40 1.50 1.60 L eff (in mm) 1.50 0.90 0.80 0.70 0.60 0.50 V Tp (V) Delay of Adder circuit as a function of variations in L and V T