H-matrix theory and applications

Similar documents
Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

The Number of Rows which Equal Certain Row

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

Math 4310 Solutions to homework 1 Due 9/1/16

The Schur-Cohn Algorithm

Bases for Vector Spaces

Contents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Notes on convergence of an algebraic multigrid method

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

A Family of Multivariate Abel Series Distributions. of Order k

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Math 426: Probability Final Exam Practice

Closure Properties of Regular Languages

Path product and inverse M-matrices

Katholieke Universiteit Leuven Department of Computer Science

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

Haddow s Experiment:

ME 501A Seminar in Engineering Analysis Page 1

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

Quadratic Forms. Quadratic Forms

5.2 Exponent Properties Involving Quotients

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

Harvard University Computer Science 121 Midterm October 23, 2012

Principle Component Analysis

Theoretical foundations of Gaussian quadrature

Lecture 4: Piecewise Cubic Interpolation

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

Lecture 2e Orthogonal Complement (pages )

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

COMPLEX NUMBER & QUADRATIC EQUATION

Elementary Linear Algebra

Lecture notes. Fundamental inequalities: techniques and applications

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

Simple Gamma Rings With Involutions.

The Regulated and Riemann Integrals

MATRICES AND VECTORS SPACE

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

MTH3101 Spring 2017 HW Assignment 6: Chap. 5: Sec. 65, #6-8; Sec. 68, #5, 7; Sec. 72, #8; Sec. 73, #5, 6. The due date for this assignment is 4/06/17.

Presentation Problems 5

Math 554 Integration

Introduction To Matrices MCV 4UI Assignment #1

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Finite Automata-cont d

Applied Statistics Qualifier Examination

Two Coefficients of the Dyson Product

Introduction to Group Theory

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

ψ ij has the eigenvalue

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

Symbolic enumeration methods for unlabelled structures

Christian Aebi Collège Calvin, Geneva, Switzerland

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

Homework 3 Solutions

Chapter 1: Fundamentals

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

Remember: Project Proposals are due April 11.

Math 61CM - Solutions to homework 9

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Multiple view geometry

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

p-adic Egyptian Fractions

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

First day August 1, Problems and Solutions

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

S. S. Dragomir. 2, we have the inequality. b a

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

p(t) dt + i 1 re it ireit dt =

Lecture 1. Functional series. Pointwise and uniform convergence.

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

Convert the NFA into DFA

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Formal Languages and Automata

Lecture 08: Feb. 08, 2019

DIRECT CURRENT CIRCUITS

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

HW3, Math 307. CSUF. Spring 2007.

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

MATH FIELD DAY Contestants Insructions Team Essay. 1. Your team has forty minutes to answer this set of questions.

Things to Memorize: A Partial List. January 27, 2017

Riemann Sums and Riemann Integrals

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

Transcription:

MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć

Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons Prttonng the ndex set Recursve row sums Nonstrct condtons

H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j Deleted row sums Lévy-Desplnques: nonsngulr Lev

H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j A complex mtrx A=[j]nxn s n H-mtrx f nd only f there exsts dgonl nonsngulr Lev mtrx W such tht AW s n DD mtrx.

H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j H HH DD

H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j H HH DD?

ubclsses of H-mtrces & dgonl sclng chrcterztons Benefts:. Nonsngulrty result coverng wder mtrx clss 2. A tghter egenvlue ncluson re (not just for the observed clss) 3. A new bound for the mx-norm of the nverse for wder mtrx clss 4. A tghter bound for the mx-norm of the nverse for some DD mtrces 5. chur complement relted results (closure nd egenvlues) 6. Convergence re for relxton tertve methods 7. ub-drect sums 8. Bounds for determnnts

Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

Ostrowsk, A. M. (937), Pupkov, V. A. (983), Hoffmn, A.J. (2000), Vrg, R.. : Geršgorn nd hs crcles (2004) Brekng the DD Recursve row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD Non-strct condtons Prttonng the ndex set

Go, Y.M., Xo, H.W. (992), Vrg, R.. (2004), Dshnc, L.., Zusmnovch, M.. (970), Kolotln, l. Yu.(200), Cvetkovć, Lj., Nedovć, M. (2009), (202), (203). Brekng the DD Recursve row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD Non-strct condtons Prttonng -DD, the ndex PH set

Mehmke, R., Nekrsov, P. (892), Gudkov, V.V. (965), zulc, T. (995), L, W. (998), Cvetkovć, Lj., Kostć, V., Nedovć, M. (204). Brekng the DD Recursve Nekrsovmtrces row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD Non-strct condtons Prttonng -DD, the ndex PH set

O. Tussky (948), Beuwens (976), zulc,t. (995), L, W. (998), Vrg, R.. (2004) Cvetkovć, Lj., Kostć, V. (2005) Brekng the DD Recursve Nekrsovmtrces row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD IDD, Non-strct CDD -IDD, condtons -CDD Prttonng -DD, the ndex PH set

O. Tussky (948), Beuwens (976), zulc,t. (995), L, W. (998), Vrg, R.. (2004) Cvetkovć, Lj., Kostć, V. (2005) Brekng the DD Recursve Nekrsovmtrces row sums H Addtve nd Ostrowsk, multplctve Pupkov condtons DD IDD, Non-strct CDD -IDD, condtons -CDD Prttonng -DD, the ndex PH set

I Addtve nd multplctve condtons Ostrowsk-mtrces multplctve condton: jj > r ( A) r ( A) j Pupkov-mtrces ddtve condton: > r ( A) + r ( A) ( A) > mn{mx { }, r } + jj j j j Ostrowsk, A. M. (937), Pupkov, V. A. (983), Hoffmn, A.J. (2000), Vrg, R.. : Geršgorn nd hs crcles (2004)

II Prttonng the ndex set -DD-mtrces Gven ny complex mtrx A=[j]nxn nd gven ny nonempty proper subset of N, A s n -DD mtrx f ( A) =, > r j j, j ( ) > r ( A) r ( A) ( r ( A) ) r ( A), j jj j j, Go, Y.M., Xo, H.W. LAA (992) Cvetkovć, Lj., Kostć, V., Vrg, R. ETNA (2004)

II Prttonng the ndex set! A mtrx A=[j]nxn s n -DD mtrx ff there exsts mtrx W n Ws such tht AW s n DD mtrx. W -DD-mtrces = W = dg( w, w,..., 2 wn ): w = γ > 0 for nd w = for γ.. γ N\.. DD

Dgonl sclng chrcterzton & clng mtrces γ.. γ N\.. DD We choose prmeter from the ntervl: I ( γ ( A) γ ( )), γ = 0, 2 A ( ) mx r ( A) γ A = r ( A), γ 2( A) = j mn jj r j rj ( A) ( A).

Dgonl sclng chrcterzton & clng mtrces -DD DD

Dgonl sclng chrcterzton & clng mtrces γ γ γ -DD T-DD DD γ γ γ γ

Dgonl sclng chrcterzton & clng mtrces γ γ γ -DD -DD T-DD DD γ γ γ γ

Dgonl sclng chrcterzton & clng mtrces γ γ γ -DD DD γ γ γ γ

Egenvlue loclzton ( ) ( ) { },, : A r z C z A = Γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) { }.,, : j A A r r A r z A r z C z A V j j jj j = ( ) ( ) ( ) ( )., Γ = j j A V A A C A σ Cvetkovć, L., Kostć, V., Vrg R..: A new Geršgorn-type egenvlue ncluson set ETNA, 2004. Vrg R..: Geršgorn nd hs crcles, prnger, Berln, 2004.

chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 chur The chur complement of complex nxn mtrx A, wth respect to proper subset α of ndex set N={, 2,, n}, s denoted by A/ α nd defned to be: A ( α ) A( α, α )( A( α )) A( α, α )

chur complement A ( α) A( α,α ) DD A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979), 246-25.

chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 chur DD Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979), 246-25.

chur complement A ( α) A( α,α ) Ostr A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997)

chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 chur Ostr Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997)

chur complement A ( α) A( α,α ) $ A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997) Zhng, F. : The chur complement nd ts pplctons, prnger, NY, (2005).

chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) $ 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997) Zhng, F. : The chur complement nd ts pplctons, prnger, NY, (2005).

chur complements of -DD A ( α) A( α,α ) -DD A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Lu, J., Hung, Y., Zhng, F. : The chur complements of generlzed doubly dgonlly domnnt mtrces. LAA (2004)

chur complements of -DD A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 -DD chur Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Lu, J., Hung, Y., Zhng, F. : The chur complements of generlzed doubly dgonlly domnnt mtrces. LAA (2004)

chur complements of -DD Theorem. Let A=[j]nxn be n -DD mtrx. Then for ny nonempty proper subset α of N, A/ α s lso n -DD mtrx. More precsely, f A s n -DD mtrx, then A/ α s n (\ α)-dd mtrx. Theorem2. Let A=[j]nxn be n -DD mtrx. Then for ny nonempty proper subset α of N such tht s subset of α or N\ s subset of α, A/ α s n DD mtrx. Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Cvetkovć, Lj., Nedovć, M. : pecl H-mtrces nd ther chur nd dgonl- chur complements. AMC (2009)

Egenvlues of the C ( α) A DD A( α,α ) A ( α,α) A( α ) σ ( A) Γ( A) = Γ ( A) ( A α) λ σ / ') = ( z C : z r A N N *) ( ) = j { } j N \ + ), -) Lu, J., Hung, Z., Zhng, J. : The domnnt degree nd dsc theorem for the chur complement. AMC (200)

Egenvlues of the C of -DD A DD, = α. 50 50 γ > σ R mx α r α ( A) r ( A), α ( A/ α ) = σ ( W AW )/ α ) Γj ( W AW ) j = γr α j α ( A) + r ( A). j j α, 0-50 - 50 0 50 0-50 - 50 0 50 Weghted Geršgorn set for the chur complement mtrx Cvetkovć, Lj., Nedovć, M. : Egenvlue loclzton refnements for the chur complement. AMC (202) Cvetkovć, Lj., Nedovć, M. : Dgonl sclng n egenvlue loclzton for the chur complement. PAMM (203)

Egenvlues of the C! Let A be n DD mtrx wth rel dgonl entres nd let α be proper subset of N. Then, A/α nd A(N\α) hve the sme number of egenvlues whose rel prts re greter (less) thn w (resp. -w), where ( ) r A α w( A) = mn jj rj ( A) + mn rj ( A) j α α A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 C Lu, J., Hung, Z., Zhng, J. : The domnnt degree nd dsc theorem for the chur complement. AMC (200)

Egenvlues of the C of -DD! Let A be n -DD mtrx wth rel dgonl entres nd let α be proper subset of N. Then, A/ α nd A(N\α) hve the sme number of egenvlues whose rel prts re greter (less) thn w (resp. -w), where Remrks: w = ( AW ) w W Ths result covers wder clss of mtrces. By chngng the prmeter n the sclng mtrx we obtn more vertcl bounds wth the sme seprtng property. We cn pply t to n DD mtrx, observng tht t belongs to T-DD clss for ny T subset of N. Cvetkovć, Lj., Nedovć, M. : Egenvlue loclzton refnements for the chur complement. AMC (202)

Egenvlues of the C of -DD A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 C

Dshnc-Zusmnovch A mtrx A=[j]nxn s Dshnc-Zusmnovch (DZ) mtrx f there exsts n ndex n N such tht ( r ( A) + ) > r ( A), j, j N. jj j j j γ.. DD Dshnc, L.., Zusmnovch, M..: O nekotoryh krteryh regulyrnost mtrc loklzc spectr. Zh. vychsl. mtem. mtem. fz. (970) Dshnc, L.., Zusmnovch, M..: K voprosu o loklzc hrkterstcheskh chsel mtrcy. Zh. vychsl. mtem. mtem. fz. (970)

PH-mtrces π : 2,,..., l n x n l x l Aggregted mtrces Kolotln, L. Yu. : Dgonl domnnce chrcterzton of PM- nd PHmtrces. Journl of Mthemtcl cences (200)

PH-mtrces * * * * Kolotln, L. Yu. : Dgonl domnnce chrcterzton of PM- nd PHmtrces. Journl of Mthemtcl cences (200)

Nekrsov mtrces! A complex mtrx A=[j]nxn s DDmtrx f for ech from N t holds tht ( A) r( A) d > > r ( A) = j j N, j! A complex mtrx A=[j]nxn s Nekrsov-mtrx f for ech from N t holds tht ( A) h( A) d > h > h ( A) = ( A), h ( A) = r ( A) h ( A) n j= j j jj + j= + j,, = 2,3,..., n. A = D L U

Nekrsov mtrces A complex mtrx A=[j]nxn s Nekrsov-mtrx f for ech from N t holds tht h > ( A) h = ( A), h ( A) = r ( A) h ( A) n j= j = 2,3,..., n. j ( A) h( A) jj + j= + Nekrsov row sums j,, d > A = D L U

Nekrsov mtrces nd sclng Theorem. Let A=[j]nxn be Nekrsov mtrx wth nonzero Nekrsov row sums. Then, for dgonl postve mtrx D where d h = ε ( A), =,, n, nd ( ε ) n = s n ncresng sequence of numbers wth ε =, ε,, = 2,, n, h ( A) the mtrx AD s n DD mtrx. zulc, T., Cvetkovć, Lj., Nedovć, M. : clng technque for Nekrsov mtrces. AMC (205) (n prnt)

Nekrsov mtrces nd permuttons! Unlke DD nd H, Nekrsov clss s NOT closed under smlrty (smultneous) permuttons of rows nd columns!! Gven permutton mtrx P, complex mtrx A=[j]nxn s clled P-Nekrsov T T ( P AP) > h ( P AP) T T ( P AP) > h( P AP). d f, N, The unon of ll P-Nekrsov= Gudkov clss A = D L U

{P,P2} Nekrsov mtrces! uppose tht for the gven mtrx A=[j]nxn nd two gven permutton mtrces P nd P2 d { } ( ) ( ) P T, h A = P h P AP,,2. P P2 ( A) mn h ( A), h ( A) > k k = We cll such mtrx {P,P2} Nekrsov mtrx. k k k A A A2

{P,P2} Nekrsov mtrces o Theorem. Every {P, P2} Nekrsov mtrx s nonsngulr. o Theorem2. Every {P, P2} Nekrsov mtrx s n H mtrx. o Theorem3. Gven n rbtrry set of permutton mtrces Π = { } p k k n P = every Пn Nekrsov mtrx s nonsngulr, moreover, t s n H mtrx. Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204)

Mx-norm bounds for the nverse of {P,P2} Nekrsov mtrces o Theorem. uppose tht for gven set of permutton mtrces {P, P2}, complex mtrx A=[j]nxn, n>, s {P, P2} Nekrsov mtrx. Then, A P z mx mn N P h mn mn N P2 ( A) z ( A), P2 ( A) h ( A),, where z z = = j= ( A) r ( A), z ( A) ( A) +, = 2,3,..., n, T P T ( A) = [ z ( A),, z ( A) ], z ( A) = Pz( P AP). n j z j jj Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204)

Mx-norm bounds for the nverse of {P,P2} Nekrsov mtrces o Theorem2. uppose tht for gven set of permutton mtrces {P, P2}, complex mtrx A=[j]nxn, n>, s {P, P2} Nekrsov mtrx. Then, A mx N mn% N & { } { ( )} % P mn z P ( A), z 2 & ( A) ' ( P mn h P ( A), h 2 A, ' ( z z = = j= ( A) r ( A), z ( A) ( A) +, = 2,3,..., n, T P T ( A) = [ z ( A),, z ( A) ], z ( A) = Pz( P AP). n Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204) j z j jj

Numercl exmples o Observe the gven mtrx B nd permutton mtrces P nd P2. B = 60 75 60 5 5 05 60 5 5 45 20 5 5 0, 5 45 P = 0 0 0 0 0 0 0 0 0 0 0, 0 P 2 = I, h h P P 2 P P P ( B) = 45, h2 ( B) = 0.25, h3 ( B) = 6.607, h4 ( B) = 4.25, P2 P2 P2 ( B) = 45, h ( B) = 0.25, h ( B) = 7.857, h ( B) = 40.4464. 2 3 4 o Notce tht B s Nekrsov mtrx. Cvetkovć, Lj., Kostć, V., Doroslovčk, K. : Mx-norm bounds for the nverse of - Nekrsov mtrces. (202)

Numercl exmples o Observe the gven mtrx B nd permutton mtrces P nd P2. B = 60 75 60 5 5 05 60 5 5 45 20 5 5 0, 5 45 P = 0 0 0 0 0 0 0 0 0 0 0, 0 P 2 = I, B B B.76842 0.96842 = 0.6843. Although the gven mtrx I Nekrsov mtrx, n ths wy we obtned better bound for the norm of the nverse.

Nekrsov mtrces Gven ny mtrx A nd ny nonempty proper subset of N we sy tht A s n -Nekrsov mtrx f jj > > h h j ( A),, ( A), j, ( h ( A) ) h ( A) ( ) > h ( A) h ( A),, j. jj j h h j ( A) r ( A) = ( A) = j= j h j ( A) jj + n j j= +, j If there exsts nonempty proper subset of N such tht A s n - Nekrsov mtrx, then we sy tht A belongs to the clss of -Nekrsov mtrces.

Nekrsov mtrces Cvetkovć, Lj., Kostć, V., Rušk,. : A new subclss of H- mtrces. AMC (2009) W = W = dg( w, w,..., 2 wn ): w = γ > 0 for nd w = for γ.. γ N\.. Nekrsov

Nekrsov mtrces Cvetkovć, Lj., Kostć, V., Rušk,. : A new subclss of H- mtrces. AMC (2009) Cvetkovć, Lj., Nedovć, M. : pecl H-mtrces nd ther chur nd dgonl-chur complements. AMC (2009) zulc, T., Cvetkovć, Lj., Nedovć, M. : clng technque for Nekrsov mtrces. AMC (205) (n prnt)

Nonstrct condtons DD - mtrces IDD-mtrces ( A),,2,..., n. r = kk > r k ( A) for one k n N CDD-mtrces ( A),,2,..., n. r = r ( A) kk > k for one k n N rreducblty non-zero chns Olg Tussky (948) T. zulc (995)

Nonstrct condtons DD - mtrces IDD-mtrces ( A),,2,..., n. r = kk > r k ( A) for one k n N CDD-mtrces ( A),,2,..., n. r = r ( A) kk > k for one k n N rreducblty non-zero chns Olg Tussky (948) T. zulc (995) L, W. : On Nekrsov mtrces. LAA (998)

Nonstrct condtons -IDD Gven n rreducble complex mtrx A=[j]nxn, f there s nonempty proper subset of N such tht the followng condtons hold, where the lst nequlty becomes strct for t lest one pr of ndces n nd j n N\, then A s n H-mtrx. r ( A) =, j j, j ( ) r ( A) r ( A),, j. ( r ( A ) r ( A) jj j Cvetkovć, Lj., Kostć, V. : New crter for dentfyng H-mtrces. JCAM (2005) j

Nonstrct condtons -CDD Gven complex mtrx A=[j]nxn, f there s nonempty proper subset of N such tht the followng condtons hold, where the lst nequlty becomes strct for t lest one pr of ndces n nd j n N\, nd for every pr of ndces n nd j n N\ for whch equlty holds there exsts pr of ndces k n nd l n N\ for whch strct nequlty holds nd there s pth from to l nd from j to k, then A s n H-mtrx. r ( A) =, j j, j ( ) r ( A) r ( A),, j. ( r ( A ) r ( A) jj j Cvetkovć, Lj., Kostć, V. : New crter for dentfyng H-mtrces. JCAM (2005) j

Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Cvetkovć, Lj., Nedovć, M. : pecl H-mtrces nd ther chur nd dgonl- chur complements. AMC (2009) Cvetkovć, Lj., Nedovć, M. : Egenvlue loclzton refnements for the chur complement. AMC (202) Cvetkovć, Lj., Nedovć, M. : Dgonl sclng n egenvlue loclzton for the chur complement. PAMM (203) Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204) zulc, T., Cvetkovć, Lj., Nedovć, M. : clng technque for Nekrsov mtrces. AMC (205) (n prnt)

Mt Trd Combr 205 THANK YOU FOR YOUR ATTENTION! HVALA NA PAŽNJI!