EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

Similar documents
EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?

2. (2pts) What is the major reason that contacts from metal to poly are not allowed on top of the gate of a transistor?

Exam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

VLSI Design and Simulation

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

MOSFET Capacitance Model

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture 3: CMOS Transistor Theory

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOSFET: Introduction

EE382M-14 CMOS Analog Integrated Circuit Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Device Models (PN Diode, MOSFET )

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

MOS Transistor Theory

Device Models (PN Diode, MOSFET )

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Digital Microelectronic Circuits ( )

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

LAYOUT TECHNIQUES. Dr. Ivan Grech

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOS Transistor I-V Characteristics and Parasitics

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes

Lecture 4: CMOS Transistor Theory

Practice 7: CMOS Capacitance

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

The K-Input Floating-Gate MOS (FGMOS) Transistor

The Devices. Devices

The Physical Structure (NMOS)

The Gradual Channel Approximation for the MOSFET:

The Devices. Jan M. Rabaey

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

EE105 - Fall 2005 Microelectronic Devices and Circuits

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Chapter 4 Field-Effect Transistors

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

MOS Transistor Properties Review

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

ECE321 Electronics I

MOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

ENEE 359a Digital VLSI Design

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Chapter 6: Field-Effect Transistors

ECE-305: Fall 2017 MOS Capacitors and Transistors

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

ECE 497 JS Lecture - 12 Device Technologies

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

The Devices: MOS Transistors

CMPEN 411 VLSI Digital Circuits Spring 2012

Figure 1: MOSFET symbols.

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Practice 3: Semiconductors

Lecture 5: CMOS Transistor Theory

6.012 Electronic Devices and Circuits Spring 2005

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate?

Lecture 11: MOS Transistor

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

MOS Capacitors ECE 2204

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Design of Analog Integrated Circuits

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Lecture 11: J-FET and MOSFET

DC and Transient Responses (i.e. delay) (some comments on power too!)

VLSI Design The MOS Transistor

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Topics to be Covered. capacitance inductance transmission lines

Integrated Circuits & Systems

Transcription:

EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances

Parasitic Capacitors in MOSFET (will initially consider two)

Parasitic Capacitors in MOSFET C GCH

Parasitic Capacitors in MOSFET Recall that pn junctions have a depletion region!

Parasitic Capacitors in pn junction capacitance MOSFET C Depletion Region For V FB <φ B /2 C JO A C φ B V FB C = CA J0 V 1- φ FB B m

Parasitic Capacitors in pn junction capacitance MOSFET The bottom and the sidewall:

Parasitic Capacitors in pn junction capacitance MOSFET C Depletion Region For a pn junction capacitor C = BOT C A BOT V 1- φ C =C A+C P J BOT SW FB B m C = SW C P SW V 1- φ FB B m

Question Are the parasitic capacitors relevant?

Observation Parasitic Capacitors are Small Consider a minimum-sized transistor 2l 3l 4l

Process Parameters from AMI 0.5u Process PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness N+ACTV 81.5 64.6 140 P+ACTV 101.9 141.9 POLY 21.6 15.8 PLY2_ 1120 HR POLY2 41 26.8 MTL1 0.09 MTL2 0.09 0.8 UNITS ohms/sq ohms angstrom PROCESS PARAMETERS Sheet Resistance Contact Resistance MTL 3 0.06 0.65 N\PLY 822 N WELL 812 ohms/sq ohms COMMENTS: N\POLY is N-well under polysilicon. CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (poly2) Area (metal1) Area (metal2) Fringe (substrate) Fringe (poly) Fringe (metal1) Fringe (metal2) Overlap (N+active) Overlap (P+active) l=.35 microns N+ACTV 424 315 315 P+ACTV 731 247 POLY 87 2473 2382 195 239 POLY2 969 M1 32 36 56 50 72 57 M2 16 16 15 31 58 39 48 M3 10 12 10 13 39 38 28 34 55 N_WELL 39 UNITS af/um^2 af/um^2 af/um^2 af/um^2 af/um^2 af/um^2 af/um^2 af/um af/um af/um af/um af/um af/um

Size of Capacitances Gate-Channel Capacitance = 6l 2 x 2.47fF/m 2 = 1.82fF Source Diffusion-Substrate Capacitance = 12l 2 x.424ff/m 2 + 14l x.315ff/m =.624fF + 1.54fF =2.16fF Note Sidewall Capacitance larger than Bottom Capacitance Are these negligible?

Are these negligible? These small capacitors play the dominant role in the speed limitations of most digital circuits These small capacitors play a major role in the performance of many linear circuits It is essential that these capacitors (parasitic capacitors) be considered and managed when designing most integrated circuits today!

Types of Capacitors 1. Fixed Capacitors a. Fixed Geometry b. Junction 2. Operating Region Dependent a. Fixed Geometry b. Junction

Parasitic Capacitors in MOSFET Fixed Capacitors

Parasitic Capacitors in MOSFET Fixed Capacitors C GSO C GDO Overlap Capacitors: C GDO, C GSO

Parasitic Capacitance Summary D C GD G B C GS Cutoff Ohmic Saturation C GS CoxWL D CoxWL D CoxWL D C GD CoxWL D CoxWL D CoxWL D L D is a model parameter S

Parasitic Capacitors in MOSFET Fixed Capacitors C BS1 C BD1 Junction Capacitors: C BS1, C BD1

Parasitic Capacitors in MOSFET Fixed Capacitors C GSO C GDO C BS1 C BD1 Overlap Capacitors: C GDO, C GSO Junction Capacitors: C BS1, C BD1

Fixed Parasitic Capacitance Summary C GD D C BD G C GS C BS B C BOT and C SW are model parameters Cutoff Ohmic Saturation C GS CoxWL D CoxWL D CoxWL D C GD CoxWL D CoxWL D CoxWL D C BG C BS C BS1 = C BOT A S +C SW P S C BS1 = C BOT A S +C SW P S C BS1 = C BOT A S +C SW P S C BD C BD1 = C BOT A D +C SW P D C BD1 = C BOT A D +C SW P D C BD1 = C BOT A D +C SW P D S

Parasitic Capacitors in MOSFET Operation Region Dependent

Parasitic Capacitors in MOSFET Operation Region Dependent -- Cutoff C GBCO Cutoff Capacitor: C GBCO

Parasitic Capacitors in MOSFET Operation Region Dependent -- Cutoff C GBCO Note: A depletion region will form under the gate if a positive Gate voltage is applied thus decreasing the capacitance density Cutoff Capacitor: C GBCO

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Cutoff C GSO C GDO C BS1 C GBCO C BD1 Overlap Capacitors: C GDO, C GSO Junction Capacitors: C BS1, C BD1 Cutoff Capacitor: C GBCO

Parasitic Capacitance Summary C GD D C BD G B C GS C BS S C BG Cutoff Ohmic Saturation C GS CoxWL D CoxWL D CoxWL D C GD CoxWL D CoxWL D CoxWL D C BG CoxWL (or less) C BS C BOT A S +C SW P S C BS1 = C BOT A S +C SW P S C BS1 = C BOT A S +C SW P S C BD C BOT A D +C SW P D C BD1 = C BOT A D +C SW P D C BD1 = C BOT A D +C SW P D

Parasitic Capacitors in MOSFET Operation Region Dependent -- Ohmic C GCH C BCH Note: The Channel is not a node in the lumped device model so can not directly include this distributed capacitance in existing models Note: The distributed channel capacitance is usually lumped and split evenly between the source and drain nodes Ohmic Capacitor: C GCH, C BCH

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Ohmic C GSO C GCH C GDO C BCH C BS1 C BD1 Overlap Capacitors: C GDO, C GSO Junction Capacitors: C BS1, C BD1 Ohmic Capacitor: C GCH, C BCH

Parasitic Capacitance Summary C GD D C BD G B C GS C BS S C BG Cutoff Ohmic Saturation C GS CoxWL D CoxWL D CoxWL D C GD CoxWL D CoxWL D CoxWL D C BG CoxWL (or less) C BS C BOT A S +C SW P S C BS1 = C BOT A S +C SW P S C BS1 = C BOT A S +C SW P S C BD C BOT A D +C SW P D C BD1 = C BOT A D +C SW P D C BD1 = C BOT A D +C SW P D

Parasitic Capacitors in MOSFET Operation Region Dependent -- Saturation C GCH C BCH Note: Since the channel is an extension of the source when in saturation, the distributed capacitors to the channel are generally lumped to the source node Saturation Capacitors: C GCH, C BCH

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed --Saturation C GSO C BS1 C GCH C BCH C GDO C BD1 Overlap Capacitors: C GDO, C GSO Junction Capacitors: C BS1, C BD1 Saturation Capacitors: C GCH, C BCH

Parasitic Capacitance C GD Summary D C BD G B C GS C BS S C BG Cutoff Ohmic Saturation C GS CoxWL D CoxWL D + 0.5C OX WL CoxWL D +(2/3)C OX WL C GD CoxWL D CoxWL D + 0.5C OX WL CoxWL D C BG CoxWL (or less) 0 0 C BS C BOT A S +C SW P S C BOT A S +C SW P S +0.5WLC BOTCH C BOT A S +C SW P S +(2/3)WLC BOTCH C BD C BOT A D +C SW P D C BOT A D +C SW P D +0.5WLC BOTCH C BOT A D +C SW P D

Parasitic Capacitance Summary C GD D C BD G B C GS C BS S C BG Cutoff Ohmic Saturation C GS CoxWL D CoxWL D + 0.5C OX WL CoxWL D +(2/3)C OX WL C GD CoxWL D CoxWL D + 0.5C OX WL CoxWL D C BG CoxWL (or less) 0 0 C BS C BOT A S +C SW P S C BOT A S +C SW P S +0.5WLC BOTCH C BOT A S +C SW P S +(2/3)WLC BOTCH C BD C BOT A D +C SW P D C BOT A D +C SW P D +0.5WLC BOTCH C BOT A D +C SW P D

R-String DAC V REF X IN n Decoder b 3 b 3 b 2 b 2 b 1 b 1 R-String V OUT Tree Decoder Parasitic Capacitances in Tree Decoder

R-String DAC V REF X IN n Decoder Example: < 0 1 0 > b 3 b 3 b 2 b 2 b 1 b 1 R-String V OUT V 3 Tree Decoder Previous-Code Dependent Settling Assume all C s initially with 0V Red denotes V, black denotes 0V, Purple some other voltage

Previous-Code Dependent Settling Assume all C s initially with 0V Red denotes V, green denotes V, black denotes 0V, Purple some other vo V REF R-String DAC Transition from <010> to <101> X IN n Example: < 1 0 1 > Decoder b 3 b 3 b 2 b 2 b 1 b 1 V 6 R-String V OUT V 3 Tree Decoder

Transition from <010> to <101> V REF R-String DAC X IN n Decoder b 3 b 3 b 2 b 2 b 1 b 1 White boxes show capacitors dependen upon previous code <010> Example: < 1 0 1 > V 6 R-String V OUT V 3 Tree Decoder Previous-Code Dependent Settling Assume all C s initially with 0V Red denotes V 3, green denotes V 6, black denotes 0V, Purple some other voltage

R-String DAC V OUT V DD Decoder b 3 b 3 b 2 b 2 b 1 b 1 Tree Decoder Tree-Decoder in Digital Domain Single transistor used at each marked intersection to for PTL AND gates Do the resistors that form part of PTL dissipate any substantial power? No because only one will be conducting for any DAC output

R-String DAC V REF X IN n Decoder b 1 b 1 b 2 b 2 b 3 b 3 R-String V OUT Tree Decoder

End of Lecture 37