Weathering & Soil. Chpt 6

Similar documents
Practice Questions for Lecture 5 Geology 1200

Mechanical Weathering

Earth: An Introduction to Physical Geology Weathering and Soil

2011 Pearson Education, Inc.

2011 Pearson Education, Inc.

Essentials of Geology, 11e

Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Mechanisms

Earth Science, 10e. Edward J. Tarbuck & Frederick K. Lutgens

Chapter 6. Weathering, Erosion, and Soil

Weathering, Soil, and Mass Movements

Sedimentary Geology. Strat and Sed, Ch. 1 1

Wednesday, October 10 th

Chapter 6 9/25/2012. Weathering, Erosion and Soils. Introduction. How Are Earth Materials Altered? Introduction. How Are Earth Materials Altered?

Sedimentary Rocks and Processes

WEATHERING. Turning Rock to Sediment and Solutions 10/22/2012

Chapter 5: Weathering and Soils. Fig. 5.14

Limestone dissolved by naturally acidic rainwater. Weathering and Soils Lecture 5

Engineering Geology ECIV 3302

3/22/2014. Earth s subsystems or cycles. Outline for next couple weeks. Weathering (breakdown of rock) Erosion

Weathering: the disintegration, or breakdown of rock material

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts

Surface Processes on the Earth. Rocks, Weathering, Erosion and Soil

Engineering Geology ECIV 2204

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land

Ecoregions Glossary. 7.8B: Changes To Texas Land Earth and Space

Lecture 13 More Surface Reactions on Mineral Surfaces. & Intro to Soil Formation and Chemistry

Weathering. Weathering: is the process which breaks rocks into smaller bits. A. Physical or mechanical weathering

Weathering, Erosion and Deposition

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Understanding Earth Fifth Edition

Why study Weathering?

Chapter 5: Weathering and soils! Monument Valley, Utah!

Rocks and Weathering

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere.

Introduction to Weathering

Chapter: Weathering and Erosion

Sedimentology & Stratigraphy. Thanks to Rob Viens for slides

Section 7.1. Weathering. SES3a. Objectives

Physical Geology, 15/e

Weathering is the process by which rocks on or near Earth s surface break down and change. Spherical weathering near Paris, NC

How does Rock become Exposed to the Surface?

Bill Nye: Rocks and Soil

Earth s Dynamic Surface

Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple

What factors affect the angle of a slope?

Weathering and Erosion

Weathering, Erosion & Soils Quiz

Wearing Down Landforms

The Production of Sediment. Contents. Weathering. Chapters 1, 3

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

EARTH SCIENCE KESSEL

Weathering. weathering involves breaking rocks without changing. As their roots grow and put pressure on rocks,

Weathering, Mass Wasting and Karst

Chapter 16 Weathering, Erosion, Mass Wasting. Chapter 16 Weathering, Erosion, Mass Wasting. Mechanical Weathering

The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface.

Weathering Cycle Teacher Notes

Weathering, Soil, & Mass Movements. Chapter 5

Weathering is the process that breaks down rock and other substances at Earth s surface

Section 1: Weathering and Soil Formation. We will study some of the processes that contribute to soil formation

2 Rates of Weathering

EARTH S CHANGING SURFACE

Weathering, Erosion, Deposition

WEATHERING. Weathering breakdown of rock materials Erosion transport of broken-down materials

PHYSICAL GEOGRAPHY. By Brett Lucas

- Take a notes packet from trapezoid table. - Start vocab on notes packet

How to Use This Presentation

Weathering and Soil Formation. Chapter 10

The Cycling of Matter. Day 1

Explain how rock composition affects the rate of weathering. Discuss how surface area affects the rate at which rock weathers.

Weathering & Erosion

Chapter 12 Weathering and Erosion

Surface Processes. Water Cycle. Evaporation Transpiration Condenstation Precipitation Infiltration Runoff

The Lithosphere. Definition

WEATHERING, EROSION & DEPOSITION STUDY GUIDE

KISS Resources for NSW Syllabuses & Australian Curriculum.

Weathering, Erosion, Deposition, and Landscape Development

THE CHANGING SURFACE OF THE EARTH

Circle the best answer for each question. There are a total of 50 questions.

Weathering and Erosion

Surface Events & Landforms. Mrs. Green

Identify three agents of mechanical weathering. Compare mechanical and chemical weathering processes.

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

Section 5.1 Weathering This section describes different types of weathering in rocks.

Igneous rocks + acid volatiles = sedimentary rocks + salty oceans

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Weathering The effects of the physical and chemical environment on the decomposition of rocks

Student Exploration: Weathering

What are the different ways rocks can be weathered?

Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur

Engineering Geology Prof. Debasis Roy Department of Civil Engineering Indian Institute of Technology, Kharagpur. Lecture - 13 Weathering

Unit 3 Study Guide -- Greenberg science, 6C

Weathering and Erosion

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion

Geology 101. Reading Guides for Chapters 6 and 12

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

Mechanical Weathering

Earth Materials Unit: Sedimen ntary Rocks and Processes Maybe One Day Text: Chapters Five and Six Lab: Laboratorry Six Name

THE SCIENCE OF MAPS. ATL Skill: Critical thinking - Use models and simulations to explore complex systems and issues

Watch the next few slides. When the slides stop transitioning get with an elbow partner to discuss the events that caused the formation of the

Weathering of Rocks. Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks

Transcription:

Weathering & Soil Chpt 6

Some important processes that break-down and transport solid material at the Earth s surface Weathering the physical breakdown and chemical decomposition of rock Mass wasting the transfer of rock and soil downslope under the influence of gravity Erosion the physical removal of material by water, wind, ice, or gravity These are ALL driven by solar energy. Your book calls these external processes - as opposed to internal processes driven by Earth s internal energy (volcanism for example)

Chptr 6 - weathering & soil Weathering formation Mechanical (physical break-down of rocks) Chemical (chemical reaction of rocks to produce dissolved ions and new minerals) Introduce this BEFORE sedimentary rocks b/c weathering produces the starting material from which sedimentary rocks are made.

Chemical & mechanical weathering are intimately connected. These are idealized concepts geologists make-up to make a complicated process easier to understand. Mechanical & chemical weathering always happen together. In some settings breaking up into smaller particles dominates (mechanical), in others dissolution of minerals dominates (chemical). Your text splits these up but this is artificial in my opinion.

Weathering = the destruction (breakdown) of rocks near the surface of the Earth Mechanical Weathering Frost wedging Heating (maybe) - exfoliation Plant Action/Roots Salt crystal formation All these involve breaking rocks into smaller pieces. No chemistry involved! Chemical Weathering Dissolution Hydrolysis/ion exchange: H + drives other cations into solution. Oxidation: visible manifestation is rusting of rocks. Transformation of solid rock into ions in dissolved in water (& commonly a new residual solid).

Mechanical weathering Frost: water expands by 9% when it freezes Thermal expansion: differential thermal expansion of minerals creates stress in rocks - hypothetical - not popular Organic activity: tree roots to micro-organisms Mechanical abrasion: physical impacts of all sizes. Sheeting - cracking parallel to surface topography - text attributes this process to unloading, but this is not known for certain.

Water is unusual because the volume of ice is greater than the same mass of liquid water. Liquid water flows into cracks, if the temperature drops below freezing the ice expands & forces the crack to open wider.

Roots as agents of mechanical weathering Plants also excrete chemicals that accelerate weathering.

Joints (fabric of cracks in rocks): Important pathways for further weathering. Differ from faults because there is no indication of movement Fig 6.13 Speroidal weathering - mass loss controlled by fracture patterns. Portions of boulders with high surface area to volume ratio will be consumed by weathering most quickly, leaving residual material that becomes increasingly rounded. Example of coupled chemical & mechanical weathering.

Mechanical Weathering Changes the Surface to Volume Ratio Rate of chemical weathering often controlled by amount of available surface area. Thus mechanical weathering can enhance chemical weathering by creating new surfaces.

Weathering = the destruction (breakdown) of rocks near the surface of the Earth Mechanical Weathering Frost wedging Heating Plant Action/Roots Salt crystal formation All these involve breaking rocks into smaller pieces. No chemistry involved! Chemical Weathering Simple dissolution Hydrolysis/ion exchange: H + drives other cations into solution. Oxidation: visible manifestation is rusting of rocks. Transformation of solid rock into ions in dissolved in water (& commonly a new residual solid)

Simple salts like halite (NaCl) and calcite (CaCO 3 ) dissolve quickly & completely - an example of dissolution in its simplest form. NaCl in water turns into dissolved Na + & Cl - CaCO 3 + 2H 2 O = Ca +2 + 2HCO3 - Acid accelerates calcite dissolution. Few silicate minerals dissolve completely pure Mg olivine can. Mg 2 SiO 4 = 2Mg +2 + SiO 4-4 More complicated silicate minerals weather to form clay minerals (sheet silcates) Feldspar + water = clay + quartz + dissolved cations Under more extreme weathering the clays break-down leaving behind only Al 2 O 3 SiO 2 (Quartz) weathers hardly at all resistant to chemical weathering

Mineral in pink boxes are minerals that also occur in Bowen s reaction series. Recall this term from Chapter 4. Lower temperature/ felsic minerals High temperature/ mafic minerals Bowen s Reaction Series in reverse: Intuitive that minerals that crystallize at the highest tempertures will be less stable at low Earth surface temperatures than those that crystallize at lower temperatures From another text

Figure 4.21 Figure from Chptr 4 Qualitative trend: Minerals that crystallize at high temperatures, tend to weather faster that those that crystallize at low temperatures. Weatherability is the inverse of Bowen s reaction series.

Chemical Weathering of Silicates Quartz: very stable Feldspars: Soluble ions plus less soluble elements form clay minerals & quartz Mafic minerals: soluble ions plus insoluble cations form oxides The soluble ions matter! They are the elements that ultimately must flow into the oceans and be incorporated into marine sediments or reprecipitate to form new mineral on land. See Table 6.1

Mafic mineral dissolve in water faster than felsic minerals. Mg - olivine Ca-rich plagioclase feldspar Pyroxene Na-rich plagiocles feldspar K feldspar mica

Small radius, high charge cations tend to form insoluble oxides - residues of weathering Large radius, low charge cations tend to dissolve more readily in water and end-up in minerals than precipitate from solution.

Insoluble residues of chemical weathering Completely soluble minerals: salts

Contrast this to chemical weathering of pure Mg olivine in earlier slide. The iron (once oxidized to Fe +3 ) is insoluble forming an iron oxide

See this written out as a chemical reaction on p182 of text.

Rates of Weathering Climate Temperature and moisture characteristics Chemical weathering is most effective in areas of warm, moist climates. Differential weathering Rocks do not weather uniformly due to regional and local factors. Results in many unusual and spectacular rock formations and landforms

Climate summary I like from an older text. Rapid weathering chemical weathering is favored by warm and wet conditions. Cold and wet favors mechanical weathering through freezethaw cycles. Without water there can be very little weathering.

Dry valleys of Antarctica - very little liquid water = very little chemical weathering. Rare spot of nearly pure mechanical weathering - sandblasting by strong winds makes these weird shaped rocks called ventifacts. http://icestories.exploratorium.edu/dispatches/big-ideas/dry-valleys/

Fertile soil What is soil? We care about soil b/c this is where much of our food grows. Note that there in an entire field of soil science - look in Tropical Agriculture. Very brief treatment given here. Soil = mineral and organic matter + water + air Rock and mineral fragments produced by weathering (regolith) that support the growth of plants Humus (decayed animal and plant remains) is a small, but essential component.

Factors influencing soil formation Parent rock - clays and humus are good help to retain moisture and important nutrients. Pure quartz or all oxides - not good. Climate - temperature and moisture Biota - important (but strongly controlled by climate) Topography - steep (bad) vs mostly flat (good) Good here means good for cultivation

The soil profile Soil-forming processes operate from the surface downward. Vertical differences are called horizons, which are zones or layers of soil. O horizon organic matter A horizon organic and mineral matter»high biological activity»o and A horizons make up the topsoil E horizon little organic matter»soluble elements and finest grains depleted B horizon zone of accumulation C horizon partially altered parent material Parent rock at base of soil profile

Though many soils, such as the one shown here, show a classic topsoil horizon this is not always the case. O Horizon - decomposing organic matter (Included in A for us) A Horizon - brown humic-rich, some mineral matter. E Horizon - light grey, intensely leached; including loss of Fe & Al; mostly residual SiO 2. B horizon -brown horizon, accumulation of clays & Fe-oxides

You do not need to learn this..

Little weathering Little organic matter Slow soil formation Moderate weathering More organic matter Slow soil formation Little organic matter Moderate weathering Abundant salts Deeper weathering Organic matter mostly destroyed just below surface Fast soil formation Though outdated, this scheme shows general trends in soil color. Red color mainly reflects Fe oxides, while browns reflect more organic matter and clays. Don t even think about learning these terms!

In humid temperature regions relatively clay-rich and organicrich soils can be found

Organic matter dominated soils - tend to form in wet boggy areas. Wet conditions favor plant growth - greater organic matter production. Cool to temperate conditions slow down organic matter destruction in soils. Wet conditions also limit transport of atmospheric oxygen to soils and limit the oxidation of Fe +2 to Fe +3 (iron oxide formation).

Soils from arid environments support limited plant growth. Precipitation of minerals - simple salts is common: calcium carbonate, gypsum. Tend to have low organic content.

In more arid settings where soil waters evaporate completely on a regular basis. Salts like calcite & gypsum (CaSO 4 ) precipitate in large amounts forming distinct layers Typical of drier climates like the south western US.

Example of a very well defined layer of calcium carbonate precipitates from evaporated soil water.

Laterite This type of soil is more typical of Hawaii.

Insoluble residues of chemical weathering Completely soluble minerals: salts

Main concepts of soil formation. Soil formation depends on climate (temperature & water supply). Warm wet climates - like Hawaii favor laterite formation a red soil rich in insoluble mineral likes hematite (Fe oxide), bauxite (Al oxide) & residual quartz. Warm dry climates favor formation of soils with salts like Calcium carbonate, Calcium sulfate. Wet cool/temperate climates favor clayrich & organic rich soils.

Soil Erosion & Management Soils form slowly. If agriculture depletes soils of essential nutrients, it will become less productive. Cultivation makes soil vulnerable to erosion - washing down rivers & blowing away in the wind. Poor farming practices amount to using soil as a non-renewable resource. Careful management of soils allows for sustained periods of high agricultural production.

Not in text book. Weathering & carbon dioxide Ultimately long term removal of carbon dioxide from the ocean atmosphere system takes place by carbon burial in rocks as carbonate rocks (CaCO 3 or (Mg,Ca)CO 3 ). A schematic weathering reaction summarizes the carbonate burial term CaSiO 3 + CO 2 => CaCO 3 + SiO 2 Believed to act as a thermostat that regulates Earth s long term climate. This makes silicate weathering a key part of our climate system. A classic example of a negative feedback - stops Earth s climate from runaway greenhouse or icehouse we hope.

Not Steady State New Steady State Silicate Weathering Feedback

CO 2 Climate Stability Weathering of silicate minerals removes carbon Temperature dioxide from the atmosphere. The rate of this process depends strongly on temperature. High temperatures favor Silicate Weathering rapid removal of carbon dioxide from the CO 2 + CaSiO 3 atmosphere by rock weathering. Negative Feedback CO 2 Temperature CaCO 3 + SiO 2 Silicate Weathering This link between carbon dioxide, average global temperature, and weathering rates is hypothesized to act as a thermostat for the Earth, preventing the Earth from becoming a hothouse or an ice-house.

Fig. Story 7.6

Hot time weathering consumes CO 2 quickly resulting in decreasing temperatures. Hot Change in temperature Cold Concept of a feedback. Time Cold time weathering consumes CO 2 a a slower rate resulting in increasing temperatures.

Why care about weathering? Source material for sedimentary rocks - key part of rock cycle Role in soil formation and hence linked to food production. Role as thermostat for Earth s long-term climate - believed to be a process that keeps Earth s climate from getting too hot or too cold. Geoengineering - weathering reactors to consume carbon dioxide.no time, ask.