Properties of Stars. Characteristics of Stars

Similar documents
Prentice Hall EARTH SCIENCE

Earth Science, 13e Tarbuck & Lutgens

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Beyond Our Solar System Chapter 24

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Prentice Hall EARTH SCIENCE

Stars and Galaxies. Content Outline for Teaching

A Star is born: The Sun. SNC1D7-Space

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Stars & Galaxies. Chapter 27 Modern Earth Science

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

CHAPTER 29: STARS BELL RINGER:

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

Chapter 23. Light, Astronomical Observations, and the Sun

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

The Stars. Chapter 14

CONTENT EXPECTATIONS

Stellar Evolution Notes

1 The Life Cycle of a Star

Instructions. Students will underline the portions of the PowerPoint that are underlined.

ASTRONOMY 1 EXAM 3 a Name

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

Life Cycle of a Star Worksheet

Chapter 24: Studying the Sun. 24.3: The Sun Textbook pages

Summer 2013 Astronomy - Test 3 Test form A. Name

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

Exam #2 Review Sheet. Part #1 Clicker Questions

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern

What is the sun? The sun is a star at the center of our solar system.

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Stars. The composition of the star It s temperature It s lifespan

Life Cycle of a Star - Activities

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Astronomy 104: Second Exam

Stars and Galaxies 1

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

NSCI 314 LIFE IN THE COSMOS

Stars and Galaxies. The Sun and Other Stars

Ch. 29 The Stars Stellar Evolution

[11] SD4.1 The student demonstrates an understanding of the theories regarding the origin and evolution of the

Notepack 23 12/19/2014 Stellar Evolution: Aim: The Life Cycle of a Star

PHYS103 Sec 901 Hour Exam No. 3 Practice Version 1 Page: 1

CHAPTER 9: STARS AND GALAXIES

Name Date Period. 10. convection zone 11. radiation zone 12. core

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Chapter 25 Beyond Our Solar System

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Abundance of Elements. Relative abundance of elements in the Solar System

18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun?

NSB ideas on Hertzsprung-Russell diagram

How the Sun Works. Presented by the

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

To infinity, and beyond!

days to rotate in its own axis km in diameter ( 109 diameter of the Earth ) and kg in mass ( mass of the Earth)

STARS AND GALAXIES STARS

Unit 1: Space. Section 2- Stars

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Stellar Astronomy Sample Questions for Exam 4

Physics HW Set 3 Spring 2015

Life and Death of a Star 2015

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

LIFE CYCLE OF A STAR

Stars and Galaxies. Evolution of Stars

Review: HR Diagram. Label A, B, C respectively

Protostars evolve into main-sequence stars

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Review. Semester Recap. Nature of Light. Wavelength. Red/Blue Light 4/30/18

10/29/2009. The Lives And Deaths of Stars. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. Stellar Evolution

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

PHYS 160 Astronomy Take-home Test #4 Fall 2017

Textbook Chapters 24 - Stars Textbook Chapter 25 - Universe. Regents Earth Science with Ms. Connery

Classifying Stars. Scientists classify stars by: 1. Temperature 2. Brightness

Stellar Astronomy Sample Questions for Exam 3

Mar 22, INSTRUCTIONS: First ll in your name and social security number (both by printing

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

LIFE CYCLE OF A STAR

Chapter 28 Stars and Their Characteristics

1. What is the primary difference between the evolution of a low-mass star and that of a high-mass star?

Why Do Stars Leave the Main Sequence? Running out of fuel

The Sun sends the Earth:

They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude.

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

25.2 Stellar Evolution

Joy of Science Experience the evolution of the Universe, Earth and Life

The Universe. is space and everything in it.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Birth & Death of Stars

The Birth and Death of Stars

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram?

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere

The General Properties of the Sun

Transcription:

Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color is a clue to a star s temperature.

The Constellation Orion

Properties of Stars Characteristics of Stars Binary Stars and Stellar Mass A binary star is one of two stars revolving around a common center of mass under their mutual gravitational attraction. Binary stars are used to determine the star property most difficult to calculate its mass.

Common Center of Mass

Properties of Stars Measuring Distances to Stars Parallax Parallax is the slight shifting of the apparent position of a star due to the orbital motion of Earth. The nearest stars have the largest parallax angles, while those of distant stars are too small to measure. Light-Year A light-year is the distance light travels in a year, about 9.5 trillion kilometers.

Parallax Original Photo Photo taken 6 months later

Properties of Stars Stellar Brightness Apparent Magnitude Apparent magnitude is the brightness of a star when viewed from Earth. Three factors control the apparent brightness of a star as seen from Earth: how big it is, how hot it is, and how far away it is. Absolute Magnitude Absolute magnitude is the apparent brightness of a star if it were viewed from a distance of 32.6 light-years.

Distance, Apparent Magnitude, and Absolute Magnitude of Some Stars

Properties of Stars Hertzsprung Russell Diagram A Hertzsprung Russell diagram shows the relationship between the absolute magnitude and temperature of stars. A main-sequence star is a star that falls into the main sequence category on the H R diagram. This category contains the majority of stars and runs diagonally from the upper left to the lower right on the H R diagram.

Hertzsprung Russell Diagram

Properties of Stars Hertzsprung Russell Diagram A red giant is a large, cool star of high luminosity; it occupies the upper-right portion of the H R diagram. A supergiant is a very large, very bright red giant star.

Properties of Stars Hertzsprung Russell Diagram Variable Stars A Cepheid variable is a star whose brightness varies periodically because it expands and contracts; it is a type of pulsating star. A nova is a star that explosively increases in brightness.

Images of a Nova Taken Two Months Apart

Properties of Stars Hertzsprung Russell Diagram Interstellar Matter A nebula is a cloud of gas and/or dust in space. There are two major types of nebulae: 1. Bright nebula - Emission nebula - Reflection nebula 2. Dark nebula

Interstellar Matter

Stellar Evolution Star Birth Protostar Stage A protostar is a collapsing cloud of gas and dust destined to become a star a developing star not yet hot enough to engage in nuclear fusion. When the core of a protostar has reached about 10 million K, pressure within is so great that nuclear fusion of hydrogen begins, and a star is born.

Nebula, Birthplace of Stars

Balanced Forces

Stellar Evolution Star Birth Main-Sequence Stage Stars age at different rates. - Massive stars use fuel faster and exist for only a few million years. - Small stars use fuel slowly and exist for perhaps hundreds of billions of years. A star spends 90 percent of its life in the main-sequence stage.

Stellar Evolution Star Birth Red-Giant Stage Hydrogen burning migrates outward. The star s outer envelope expands. Its surface cools and becomes red. The core collapses as helium is converted to carbon. Eventually all nuclear fuel is used and gravity squeezes the star.

Stellar Evolution Burnout and Death All stars, regardless of their size, eventually run out of fuel and collapse due to gravity. Death of Low-Mass Stars Stars less than one-half the mass of the sun never evolve to the red giant stage but remain in the stable main-sequence stage until they consume all their hydrogen fuel and collapse into a white dwarf.

Stellar Evolution Burnout and Death Death of Medium-Mass Stars Stars with masses similar to the sun evolve in essentially the same way as low-mass stars. During their collapse from red giants to white dwarfs, mediummass stars are thought to cast off their bloated outer layer, creating an expanding round cloud of gas called planetary nebula.

Planetary Nebula

Stellar Evolution Burnout and Death Death of Massive Stars In contrast to sunlike stars, stars that are over three times the sun s mass have relatively short life spans, which end in a supernova event. A supernova is an exploding massive star that increases in brightness many thousands of times. The massive star s interior condenses and may produce a hot, dense object that is either a neutron star or a black hole.

Crab Nebula in the Constellation Taurus

Stellar Evolution

Stellar Evolution Burnout and Death H R Diagrams and Stellar Evolution Hertzsprung Russell diagrams have been helpful in formulating and testing models of stellar evolution. They are also useful for illustrating the changes that take place in an individual star during its life span.

Life Cycle of a Sunlike Star

Stellar Evolution Stellar Remnants White Dwarfs A white dwarf is a star that has exhausted most or all of its nuclear fuel and has collapsed to a very small size, believed to be near its final stage of evolution. The sun begins as a nebula, spends much of its life as a mainsequence star, and then becomes a red giant, a planetary nebula, a white dwarf, and, finally, a black dwarf.

Summary of Evolution for Stars of Various Masses

Stellar Evolution Stellar Remnants Neutron Stars A neutron star is a star of extremely high density composed entirely of neutrons. Neutron stars are thought to be remnants of supernova events. Supernovae A pulsar is a source that radiates short bursts or pulses of radio energy in very regular periods. A pulsar found in the Crab Nebula during the 1970s is undoubtedly the remains of the supernova of 1054.

Veil Nebula in the Constellation Cygnus

Stellar Evolution Stellar Remnants Black Holes A black hole is a massive star that has collapsed to such a small volume that its gravity prevents the escape of everything, including light. Scientists think that as matter is pulled into a black hole, it should become very hot and emit a flood of X-rays before being pulled in.

Black Hole

The Sun Structure of the Sun Because the sun is made of gas, no sharp boundaries exist between its various layers. Keeping this in mind, we can divide the sun into four parts: the solar interior; the visible surface, or photosphere; and two atmospheric layers, the chromosphere and corona.

The Sun Structure of the Sun Photosphere The photosphere is the region of the sun that radiates energy to space, or the visible surface of the sun. It consists of a layer of incandescent gas less than 500 kilometers thick. It exhibits a grainy texture made up of many small, bright markings, called granules, produced by convection. Most of the elements found on Earth also occur on the sun. Its temperature averages approximately 6000 K (10,000ºF).

Structure of the Sun

24.3 The Sun Structure of the Sun Chromosphere The chromosphere is the first layer of the solar atmosphere found directly above the photosphere. It is a relatively thin, hot layer of incandescent gases a few thousand kilometers thick. Its top contains numerous spicules, which are narrow jets of rising material.

Chromosphere

The Sun Structure of the Sun Corona The corona is the outer, weak layer of the solar atmosphere. The temperature at the top of the corona exceeds 1 million K. Solar wind is a stream of protons and electrons ejected at high speed from the solar corona.

The Sun The Active Sun Sunspots A sunspot is a dark spot on the sun that is cool in contrast to the surrounding photosphere. Sunspots appear dark because of their temperature, which is about 1500 K less than that of the surrounding solar surface.

Sunspots

The Sun The Active Sun Prominences Prominences are huge cloudlike structures consisting of chromospheric gases. Prominences are ionized gases trapped by magnetic fields that extend from regions of intense solar activity.

Solar Prominence

The Sun The Active Sun Solar Flares Solar flares are brief outbursts that normally last about an hour and appear as a sudden brightening of the region above a sunspot cluster. During their existence, solar flares release enormous amounts of energy, much of it in the form of ultraviolet, radio, and X-ray radiation. Auroras, the result of solar flares, are bright displays of everchanging light caused by solar radiation interacting with the upper atmosphere in the region of the poles.

The Sun The Solar Interior Nuclear Fusion Nuclear fusion is the way that the sun produces energy. This reaction converts four hydrogen nuclei into the nucleus of a helium atom, releasing a tremendous amount of energy. During nuclear fusion, energy is released because some matter is actually converted to energy. It is thought that a star the size of the sun can exist in its present stable state for 10 billion years. As the sun is already 4.5 billion years old, it is middle-aged.

Nuclear Fusion