ADVANCED MULTI-RESIDUE SCREENING IN VETERINARY DRUG ANALYSIS USING UPLC -ToF MS

Similar documents
A Rapid Approach to the Confirmation of Drug Metabolites in Preclinical and Clinical Bioanalysis Studies

Key Words Q Exactive Focus, Orbitrap, veterinary drugs, small molecule HRAM quantitation, small molecule HRAM screening, UHPLC, vdia

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

C HA R AC T E RIZ AT IO N O F INK J E T P RINT E R C A RT RIDG E INK S USING A CHEMOMETRIC APPROACH

Identification and Characterization of an Isolated Impurity Fraction: Analysis of an Unknown Degradant Found in Quetiapine Fumarate

Q-TOF PREMIER DYNAMIC RANGE ENHANCEMENT AND ACCURATE MASS MEASUREMENT PERFORMANCE

A Workflow Approach for the Identification and Structural Elucidation of Impurities of Quetiapine Hemifumarate Drug Substance

Quantitation of High Resolution MS Data Using UNIFI: Acquiring and Processing Full Scan or Tof-MRM (Targeted HRMS) Datasets for Quantitative Assays

Multi-residue analysis of pesticides by GC-HRMS

The Use of the ACQUITY QDa Detector for a Selective, Sensitive, and Robust Quantitative Method for a Potential Genotoxic Impurity

SEAMLESS INTEGRATION OF MASS DETECTION INTO THE UV CHROMATOGRAPHIC WORKFLOW

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

IN QUALITATIVE ANALYSIS,

Analysis of Serum 17-Hydroxyprogesterone, Androstenedione, and Cortisol by UPLC-MS/MS for Clinical Research

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences

A Case of Pesticide Poisoning: The Use of a Broad-Scope Tof Screening Approach in Wildlife Protection

Overview. Introduction. André Schreiber AB SCIEX Concord, Ontario (Canada)

Rapid, Reliable Metabolite Ratio Evaluation for MIST Assessments in Drug Discovery and Preclinical Studies

Traditional Herbal Medicine Structural Elucidation using SYNAPT HDMS

Bilag 3 Appendix B: Function tests

DETERMINATION OF PESTICIDES IN FOOD USING UPLC WITH POLARITY SWITCHING TANDEM QUADRUPOLE LC/MS/MS

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

Automated and accurate component detection using reference mass spectra

All Ions MS/MS: Targeted Screening and Quantitation Using Agilent TOF and Q-TOF LC/MS Systems

Lirui Qiao, 1 Rob Lewis, 2 Alex Hooper, 2 James Morphet, 2 Xiaojie Tan, 1 Kate Yu 3

UPLC Intact MASS Analysis Application Kit

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

MassHunter TOF/QTOF Users Meeting

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

Prep 150 LC System: Considerations for Analytical to Preparative Scaling

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System

[application note] ACQUITY UPLC/SQD ANALYSIS OF POLYMER ADDITIVES. Peter J. Lee, and Alice J. Di Gioia, Waters Corporation, Milford, MA, U.S.A.

Analysis of Pharmaceuticals and Personal Care Products in River Water Samples by UHPLC-TOF

Improved Extraction of THC and its Metabolites from Oral Fluid Using Oasis PRiME HLB Solid Phase Extraction (SPE) and a UPLC CORTECS C 18

Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 6460 Triple Quadrupole LC/MS system with Triggered MRM

DEMONSTRATING SUPERIOR LINEARITY: THE ACQUITY UPLC PHOTODIODE ARRAY DETECTOR

Extraction of Methylmalonic Acid from Serum Using ISOLUTE. SAX Prior to LC-MS/MS Analysis

NEW TOOLS FOR FINDING AND IDENTIFYING METABOLITES IN A METABOLOMICS WORKFLOW

Jonathan P. Danaceau, Erin E. Chambers, and Kenneth J. Fountain Waters Corporation, Milford, MA USA APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS

Identification of Human Hemoglobin Protein Variants Using Electrospray Ionization-Electron Transfer Dissociation Mass Spectrometry

Extraction of Aflatoxins and Ochratoxin from Dried Chili Using ISOLUTE. Myco Prior to LC-MS/MS Analysis

PesticideScreener. Innovation with Integrity. Comprehensive Pesticide Screening and Quantitation UHR-TOF MS

LC-HRMS: Challenges for Routine Implementation

APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEY WORDS. Simultaneous high-throughput screening of melamine (MEL) and cyanuric acid (CYA).

Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS

Effects of Aqueous Sample Content and Aqueous Co-Solvent Composition on UPC 2 Separation Performance

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

Routine MS Detection for USP Chromatographic Methods

X R N R. Mike McCullagh, 1 Sara Stead, 1 Jonathan Williams, 1 Wouter de Keizer, 2 and Aldert Bergwerff 2. Waters Corporation, Manchester, UK 2

Overview. Introduction. André Schreiber 1 and Yun Yun Zou 1 1 AB SCIEX, Concord, Ontario, Canada

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer

EPA Method 1694: Analysis of Pharmaceuticals and Personal Care Products in Water

FORENSIC TOXICOLOGY SCREENING APPLICATION SOLUTION

PosterREPRINT AN INTERACTIVE PHYSICOCHEMICAL PROPERTY PROFILING SOFTWARE FOR EARLY CANDIDATE ANALYSIS IN DRUG DISCOVERY INTRODUCTION

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

The Analysis of Fluoroquinolones in Beef Kidney Using HPLC Electrospray Mass Spectrometry Application

Definitive EtG/EtS LC-MS/MS Analysis:

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Using TOF for Screening and Quantitation of Sudan Red Colorants in Food Application

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

Screening of pesticides residues by the time of flight analyzer (ToF) : Myth or reality?

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

TANDEM MASS SPECTROSCOPY

Extraction of Cocaine and Metabolites From Urine Using ISOLUTE SLE+ prior to LC-MS/MS Analysis

Multi-residue GC-MS analysis. Richard Fussell CSL York, UK

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

WADA Technical Document TD2003IDCR

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System

Sensitive and Repeatable Analysis of Pesticides in QuEChERS Extracts with APGC-MS/MS

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT

Quantitative Analysis and Identification of Migrants in Food Packaging Using LC-MS/MS

Multi-residue analysis of antimicrobial agents by LC-MS

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer

Live Webinar : How to be more Successful with your ACQUITY QDa Detector?

Tomorrow s quantitation with the TSQ Fortis mass spectrometer: quantitation of phenylephrine hydrochloride for QA/QC laboratories

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

The Theory of HPLC. Quantitative and Qualitative HPLC

Bioanalytical Chem: 4590: LC-MSMS of analgesics LC-MS Experiment Liquid Chromatography Mass Spectrometry (LC/MS)

New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses

Analysis of a Verapamil Microsomal Incubation using Metabolite ID and Mass Frontier TM

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Rapid and Sensitive Analysis of Antibiotics in Children s Urine Using the X500R QTOF System

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer

Determination of Pharmaceuticals in Environmental Samples

Implementing GC-HRAM MS for More Efficient and Effective Routine Pesticide Residues Analysis

Optimization of the sample preparation and extraction methodology

CASE STUDY 3: Quantitative and Qualitative Analysis of Perfluoroalkyl Substances (PFASs) in Wildlife Samples Using the Xevo G2-XS Q-Tof GOAL

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

Quantitative and Qualitative Confirmation of Pesticides in Beet Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Ultrasensitive EPA Method 1694 with the Agilent 6460 LC/MS/MS with Jet Stream Technology for Pharmaceuticals and Personal Care Products in Water

At-a-Glance. Verapamil C 27 H 38 N 2 O 4 M+H + =

USP Method Transfer and Routine Use Analysis of Irbesartan Tablets from HPLC to UPLC

Identifying Disinfection Byproducts in Treated Water

Powerful Scan Modes of QTRAP System Technology

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

Transcription:

ADVACED MULTI-RESIDUE SCREEIG I VETERIARY DRUG AALYSIS USIG UPLC -ToF MS J.A. van Rhijn 1, C. Bourgeon 1, J.J.P.Lasaroms 1, E. osterink 1 and D. McMillan 2 1 RIKILT Institute of Food Safety, Wageningen, The etherlands 2 Waters Corp. MS Technologies Centre, Manchester, UK. ITRDUCTI A wide variety of veterinary drugs are currently available for antibiotic use in livestock around the world. In many countries, including EU member states and the US, testing for these compounds in animal based food products is mandatory and the permissible concentration levels are strictly regulated. Due to the complexity of matrices (e.g. muscle tissues, urine, milk) and the large number of potential analytes, it is beneficial to use a generic analytical method applicable to a diverse range of samples, which can be reprocessed post-acquisition if food scares arise. Traditionally, veterinary drug residues in biological matrices are analyzed by microbiological or immunochemical techniques. While these tests can provide a rapid and cost effective screening method for certain classes of compound, they are generally only suitable for one analyte or class, or do not give quantitative results. Currently, therefore, a large number of single residue or group-specific methods of analysis are required in order to analyze a wide array of veterinary drugs. This application note demonstrates the feasibility of a truly generic LC-MS method for the analysis of potentially unlimited contaminants with minimal sample preparation. UPLC-ToF MS offers several advantages for such analysis over other techniques. The Waters ACQUITY UPLC system utilizes novel column packing material with a 1.7 μm particle size, operated at elevated pressure to obtain maximum speed and resolution from a chromatographic run (1). The Waters LCT Premier oa-tof mass spectrometer with W-ptics and DRE offers unparalleled full spectral sensitivity with <3ppm mass accuracy across a wide dynamic range. The data produced by this combination is rich in information, and has the advantage of being untargeted. Waters ChromaLynx Application Manager, an optional feature of Waters MassLynx Software, quickly and efficiently deconvolutes mass spectra from complex chromatograms to present the user with a readily accessible and easy to interpret dataset. Screening is carried out by comparison to a limitless library of experimental and/or theoretical spectra and further confirmation of identified compounds is presented at-a-glance by accurate mass scoring. HPLC with UV or fluorescence detection has been used for quantitation and confirmation of screening results for some time, but in order to obtain sufficient sensitivity and selectivity, extensive cleanup of the samples is often required. More recently, in response to and in anticipation of stricter legislation, many analysts have taken advantage of the increased quantitative and confirmatory capabilities of LC-MS/MS. However, the increased experimental setup and inherently selective nature of multiple reaction monitoring (MRM) type experiments are restrictive when analytes of interest have not been targeted in the initial sample analysis. This makes post acquisition reprocessing and the discovery of unknown contaminants practically impossible. Waters ACQUITY UPLC with LCT Premier Mass Spectrometer.

METHDS Sample Preparation Milk (1mL) was mixed with acetonitrile (1mL) to effect precipitation of proteins. The supernatant was isolated and diluted five-fold with water and was ultrafiltered over a disposable UF device with a molecular weight cut-off (MWC) of 30 kda. An aliquot of 16.6 μl of the ultrafiltrate was injected in the UPLC-ToF system without further sample purification. Extracted matrix matched standard solutions were prepared with 41 compounds from five classes (tetracyclins, sulfonamides, quinolones, macrolides and benzimidazoles) at 0.5, 1, 2, 5, 10, 25, 50 and 100 μg/l concentrations by adding the appropriate analytes to milk samples prior to processing. These concentrations cover the relevant concentration range with respect to the maximum residue limit (MRL) of the analytes. The spiked samples were allowed to rest for at least 30 minutes before extraction was started to allow adequate equilibration of analytes with the sample matrix. LC Conditions LC System Waters ACQUITY UPLC Mobile Ph. A 0.1% formic acid Mobile Ph. B Acetonitrile MS Conditions Instrument Waters LCT Premier Ion Mode Electrospray + Capillary V 3200 V Aperture 1 V 8 V & 30 V Source T 120 C Desolvation T 400 C Gas Flow 600 L/hr Mass Range 100 1000 Da Resolution 10000 FWHM (W-mode) Acq. Time 0.2 s Calibration ach 2 2 LockSpray Leucine Enkephalin reference [M+H]+ = 556.2771Da RESULTS & DISCUSSI Prior to software-assisted processing, the data were interrogated manually to determine the sensitivity on spiked compounds in milk. Using this targeted approach for known analytes also enabled an investigation of the quantitative capability of the UPLC-ToF system. Figure 1 shows good linearity was observed and that the LoD/LoQ are much lower than the MRL concentration. Column Waters ACQUITY BEH C 18 1.7 μm, 2.1 x 50 mm Column Temp 40 C Flow Rate 350 μl/min Injection Volume 16.6 μl (calibrated) Cycle Time 9 minutes Gradient t = 0 min 0% B t = 1 min 0% B t = 6 min 40% B t = 7.5 min 100% B Figure 1. Quantitation of Flumequine. Chromatogram shown is 0.1 x MRL concentration.

Spectra from standard solutions were acquired with an aperture voltage of 8 V and refined in order to create clean library entries with retention time data; and also at 30 V to obtain representative fragments by in-source CID. All spectra were quality checked using i-fit software, which compares the measured and theoretical isotope ratios to give a score based on the proximity of the match (2). For the purposes of this study, spectra should have a score of <30. A library was created containing a normal MS spectrum and at least one fragmented spectrum for each compound using the standard library feature in MassLynx. This was then converted to the IST format with ChromaLynx, which allows filtering of the matched spectra for screening purposes. Figure 2 shows the MassLynx library editor, where compound name, formula and molecular weight are entered as well as optional filtering parameters such as retention time, polarity and cone voltage. ther parameters, as shown in Figure 3, allow a user to specify peak width and noise limits; rejection factors to avoid multiple occurrences of the same component and internal standard detection parameters if semi-quantitative work is required. A library search method is also created which specifies which libraries to use; how many ions to search against; maximum number of hits and any screening parameters. With these methods in place, a search or a screen can be performed using nominal masses, and is therefore not restrictive as an exactmass library would be. Instead, an extra suite of accurate mass parameters is included which allows the n most intense ions from a deconvoluted mass spectrum to be scored by proximity to the theoretical exact mass of the compound from its library formula. Using this method, not only can a library hit be confirmed at-aglance, but any fragments formed by in-source CID also have an elemental composition based on that of the parent ion assigned to them, which makes structural elucidation much easier. Figure 2. MassLynx library editor. The ChomaLynx Application Manager has been designed to efficiently deconvolute spectra from complex chromatograms using either automatic or manual peak detection and spectral refinement. Setting up a method is simply a matter of specifying the n most intense ions and a mass window (either in Da or ppm) and the software will deconvolute the data by extracting these masses. Figure 3. ChromaLynx Identify Method Editor. Figure 4 overleaf shows the ChromaLynx browser results for a milk sample spiked with several veterinary drugs at a concentration of 10 μg/l - equivalent to the lowest MRL of any of the 41 compounds. The two compounds required to be reported at this level are Flubendazole and xfendazole, both of which have been correctly assigned by reference to the library created from standards.

Figure 4. ChromaLynx Application Manager showing Fenbendazole successfully screened from a multi-analyte spiked milk sample at its MRL concentration (10ppb). Electrospray, being a soft ionization technique, does not produce spectra with the same degree of fragmentation as other techniques, and therefore there are fewer matches to be made than with, for example, GC-MS libraries. Hence, in this study, candidates with a match factor (averaged from the high and low energy functions) over 500 are considered positively identified, and between 250 500 are defined as tentative. As is clearly displayed, both compounds are positively identified by the green check mark as having a good match to the library entry. However, equally important is the green shaded elemental composition in the match window, showing that the library formula matches the measured mass to <5 ppm (in this case [M+H] + ΔM = 1.0ppm). A secondary confirmation level of 5 20 ppm is also applied, so matches can still be made if the data is compromised. As an additional quality check, elemental compositions can also be displayed by i-fit score. The table in Figure 5 overleaf shows a summary of the MRLs (where applicable), the level at which ChromaLynx screening gives a positive (tentative in brackets) identification and the LoDs for each of the spiked compounds. All library entries are correctly identified at or below their MRL.

It is important to note at this point that, while in this study a mass accuracy of <5 ppm has been considered confirmatory, there is currently no such consideration in EU legislation. A sample found to contain any of the analytes should therefore be subject to further analysis. This is typically performed on a tandem quadrupole type MS/MS instrument, where product ion ratios are used for confirmation. The use of accurate mass spectra for confirmatory purposes is currently under investigation by many groups, and will require validation. Benzimidazoles Macrolides Tetracyclines Sulfonamides Quinolones MRL/ Screened LoD/ µg/l Level µg/l Albendazole 100 100 (25) 0.10 Albendazole Sulfoxide 100 25 (10) 0.20 Fenbendazole 10 10 0.20 xfendazole 10 10 (5) 0.10 xfendazole Sulfone 100 (25) 0.10 Mebendazole 100 (25) 0.20 Levamisole 10 (5) 0.25 Thiabendazole 100 10 0.20 Flubendazole 10 0.05 xibendazole 25 (5) 0.05 Spiramycin 200 25 0.30 Tilmicosin 50 10 (5) 0.50 Tylosin 50 25 1.00 Josamycin 25 0.20 Tiamulin 5 (1) 0.05 Valnemulin 10 0.10 Lincomycine 150 10 0.20 alidixic Acid (25) 0.10 xolinic Acid 50 (10) 0.10 Flumequine 50 100 (10) 0.10 orfloxacin 100 (50) 1.00 Ciprofloxacin * 1.00 Lomefloxacin (IS) 50 0.50 Enrofloxacin 100 10 Marbofloxacin 75 10 0.20 Difloxacin 25 (5) 0.20 Danofloxacin 30 50 (25) 0.20 Cinchophen 100 (10) 0.10 Sarafloxacin 50 (25) 0.20 Dapsone 100 (25) 0.10 Sulfadiazine 100 (100) 0.25 Sulfamethoxazole 100 * 0.15 Sulfamethazine 100 * 0.20 Sulfadimethoxine 100 100 (10) 0.15 Sulfadimidine 100 25 (10) 0.25 Sulfadoxine 100 25 (10) 0.05 Sulfaquinoxaline 100 (25) 0.20 Doxycycline (-H2) 100 (25) 0.40 Tetracycline 100 (100) 1.00 xytetracycline 100 (50) 0.50 Chlorotetracycline 100 (50) 4.00 * = not in library Figure 5. Summary table showing analytes MRL, screened concentration and estimated LoD in milk. However, at this early stage it is the authors recommendation that preferably two mass spectral peaks with <5 ppm accuracy, acquired with a mass resolution of at least 10,000 FWHM should be considered. Matching measured and theoretical isotope ratios has proven a reliable and conclusive method for the correct assignment of an analyte s identity and, hence, stringent criteria for this should be compulsory. Dapsone H 2 S H 2 F H H Danofloxacin H H H Mebendazole Figure 6. A selection of analytes included in this study. The analytical challenge lies in the diversity of structures and chemistries exhibited. H H H H H Josamycin H H H xytetracycline H H 2

SUMMARY The method presented is suitable for the screening of multiple veterinary drug residues in real matrix samples. A generic, minimal sample preparation for veterinary drug residues in milk samples is sufficient when analysis is carried out by UPLC-ToF MS. ChromaLynx deconvolution software effectively detects chromatographic peaks, even in complex matrices and when compounds co-elute. The resulting refined spectra are suitable for library matching against user-compiled reference spectra. Increased chromatographic resolution from UPLC separation helps to minimize matrix effects and obtain analyte peaks suitable for quantitation in the ToF analyzer. Spectra with high mass accuracy and correct isotope ratios are valuable aids to the identification of contaminants, and may be appropriate for confirmatory analysis. REFERECES 1. Swartz M. E., UPLC, An Introduction and Review, J. Liquid Chromatography and Related Technologies, 2005, 28(7-8), pp 1253-1263. 2. Hobby K., A ovel Method of Isotope Prediction Applied to Elemental Composition Analysis. Poster, presented at BMSS 2005. Waters literature code 720001345E. Waters, ACQUITY UPLC, UPLC, LCT Premier, ChromaLynx, MassLynx, and i-fit are trademarks of Waters Corporation. All other trademarks are the property of their respective owners. 2006 Waters Corporation Produced in the U.S.A. April 2006 720001675E SE-PDF