Some New Properties for k-fibonacci and k- Lucas Numbers using Matrix Methods

Similar documents
Fibonacci and k Lucas Sequences as Series of Fractions

On the properties of k-fibonacci and k-lucas numbers

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix

ON A FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-LUCAS SEQUENCE. A. A. Wani, V. H. Badshah, S. Halici, P. Catarino

On the Pell Polynomials

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences

SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL, PELL- LUCAS AND MODIFIED PELL SEQUENCES

On the complex k-fibonacci numbers

Some Interesting Properties and Extended Binet Formula for the Generalized Lucas Sequence

Computers and Mathematics with Applications

GENERATING FUNCTIONS K-FIBONACCI AND K-JACOBSTHAL NUMBERS AT NEGATIVE INDICES

On the generating matrices of the k-fibonacci numbers

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS

POWERS OF A MATRIX AND COMBINATORIAL IDENTITIES

Intermediate Algebra. 3.7 Variation. Name. Problem Set 3.7 Solutions to Every Odd-Numbered Problem. Date

Determinant and Permanent of Hessenberg Matrix and Fibonacci Type Numbers

On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10

ON THE SUM OF POWERS OF TWO. 1. Introduction

arxiv: v1 [math.nt] 6 Apr 2018

Impulse Response Sequences and Construction of Number Sequence Identities

Extended Binet s formula for the class of generalized Fibonacci sequences

On k-fibonacci Numbers with Applications to Continued Fractions

Sums of Squares and Products of Jacobsthal Numbers

On h(x)-fibonacci octonion polynomials

ALTERNATING SUMS OF FIBONACCI PRODUCTS

ON SUMS OF SQUARES OF PELL-LUCAS NUMBERS. Gian Mario Gianella University of Torino, Torino, Italy, Europe.

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S.

Combinatorial proofs of Honsberger-type identities

The generalized order-k Fibonacci Pell sequence by matrix methods

Generalized Bivariate Lucas p-polynomials and Hessenberg Matrices

POWERS OF A MATRIX AND COMBINATORIAL IDENTITIES. J. Mc Laughlin Mathematics Department, Trinity College, 300 Summit Street, Hartford, CT

Infinite arctangent sums involving Fibonacci and Lucas numbers

Unit Graph of Some Finite Group Z n, C n and D n

PAijpam.eu A NOTE ON BICOMPLEX FIBONACCI AND LUCAS NUMBERS Semra Kaya Nurkan 1, İlkay Arslan Güven2

The k-fibonacci Dual Quaternions

Infinite arctangent sums involving Fibonacci and Lucas numbers

On Some Identities and Generating Functions

arxiv: v1 [math.co] 11 Aug 2015

On the (s,t)-pell and (s,t)-pell-lucas numbers by matrix methods

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples

Links Between Sums Over Paths in Bernoulli s Triangles and the Fibonacci Numbers

arxiv: v1 [math.nt] 20 Sep 2018

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence

ARITHMETIC PROGRESSION OF SQUARES AND SOLVABILITY OF THE DIOPHANTINE EQUATION 8x = y 2

The k-fibonacci matrix and the Pascal matrix

The Star of David and Other Patterns in Hosoya Polynomial Triangles

Fibonacci and Lucas Identities the Golden Way

#A48 INTEGERS 9 (2009), A NEW GENERALIZATION OF FIBONACCI SEQUENCE AND EXTENDED BINET S FORMULA

ON AN EXTENSION OF FIBONACCI SEQUENCE

BIVARIATE JACOBSTHAL AND BIVARIATE JACOBSTHAL-LUCAS MATRIX POLYNOMIAL SEQUENCES SUKRAN UYGUN, AYDAN ZORCELIK

Notes on Continued Fractions for Math 4400

#A91 INTEGERS 18 (2018) A GENERALIZED BINET FORMULA THAT COUNTS THE TILINGS OF A (2 N)-BOARD

Impulse Response Sequences and Construction of Number Sequence Identities

FIBONACCI NUMBERS AND SEMISIMPLE CONTINUED FRACTION. and Ln

Summation of certain infinite Fibonacci related series

LINEAR RECURRENCES AND CHEBYSHEV POLYNOMIALS

CLOSED FORM CONTINUED FRACTION EXPANSIONS OF SPECIAL QUADRATIC IRRATIONALS

A q-analogue OF THE GENERALIZED FACTORIAL NUMBERS

Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence

Formulas for sums of squares and products of Pell numbers

arxiv: v2 [math.co] 8 Oct 2015

Applications. More Counting Problems. Complexity of Algorithms

arxiv: v1 [math.nt] 17 Nov 2011

q-counting hypercubes in Lucas cubes

QUOTIENTS OF FIBONACCI NUMBERS

Generalized Identities on Products of Fibonacci-Like and Lucas Numbers

INCOMPLETE BALANCING AND LUCAS-BALANCING NUMBERS

On identities with multinomial coefficients for Fibonacci-Narayana sequence

Bracket polynomials of torus links as Fibonacci polynomials

F. T. HOWARD AND CURTIS COOPER

arxiv: v1 [math.co] 20 Aug 2015

Number Theory and Graph Theory

FIFTH ROOTS OF FIBONACCI FRACTIONS. Christopher P. French Grinnell College, Grinnell, IA (Submitted June 2004-Final Revision September 2004)

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX

MATH 422, CSUSM. SPRING AITKEN

Sums of Tribonacci and Tribonacci-Lucas Numbers

Summation of Certain Infinite Lucas-Related Series

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON SUMS AND RECIPROCAL SUM OF GENERALIZED FIBONACCI NUMBERS BISHNU PADA MANDAL. Master of Science in Mathematics

CONGRUENCES FOR BERNOULLI - LUCAS SUMS

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS

A Probabilistic View of Certain Weighted Fibonacci Sums

arxiv: v1 [math.ho] 28 Jul 2017

Invertible Matrices over Idempotent Semirings

Enumerating Binary Strings

NEW IDENTITIES FOR THE COMMON FACTORS OF BALANCING AND LUCAS-BALANCING NUMBERS

arxiv: v1 [math.ra] 30 Nov 2016

Hyperbolic expressions of polynomial sequences and parametric number sequences defined by linear recurrence relations of order 2

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers

1 Examples of Weak Induction

RICCATI MEETS FIBONACCI

On Gaussian Pell Polynomials and Their Some Properties

Two Identities Involving Generalized Fibonacci Numbers

Selected Math 553 Homework Solutions

Examples of Finite Sequences (finite terms) Examples of Infinite Sequences (infinite terms)

A System of Difference Equations with Solutions Associated to Fibonacci Numbers

Transcription:

See discussions, stats, author profiles for this publication at: http://wwwresearchgatenet/publication/7839139 Some New Properties for k-fibonacci k- Lucas Numbers using Matrix Methods RESEARCH JUNE 015 DOI: 101310/RG1173677 READS 15 1 AUTHOR: A D Godase V P College, Vaijapur 3 PUBLICATIONS 95 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, letting you access read them immediately Available from: A D Godase Retrieved on: 09 November 015

Some New Properties for k Fibonacci k Lucas Numbers using Matrix Methods A D Godase 1 V P College, Vaijapur, Maharashtra, India mathematicsdept@vpcollegenet M B Dhakne Dr B A M University, Aurangabad, Maharashtra, India ijntindia@gmailcom Abstract In this paper, some new sums for k Fibonacci k Lucas numbers are derived proved k k + by using matrices S 0 k 1 k R + The sums we derived are not 1 0 encountered in the k Fibonacci k Lucas numbers literature Keywords: k-fibonacci sequence; k-lucas sequence;recurrence relation; Matrix algebra Mathematics Subject Classification (010): 11B39, 11B37,11B99 1 Introduction Many authors defined generalized Fibonacci sequences by varying initial conditions recurrence relation 1 1This paper represents an interesting investigation about some special relations between matrices k Fibonacci numbers,k Lucas numbersthis investigation is valuable to obtain new k Fibonacci,k Lucas identities by different methodsthis paper contributes to k Fibonacci,k Lucas numbers literature, encourage many researchers to investigate the properties of such number sequences Some Preliminary Results In this section, some definitions preliminary results are given which will be used in this paper Definition 1 The k Fibonacci sequence {F k,n } n N is defined as, F k,n+1 kf k,n + F k,n 1, with F k,0 0, F k,1 1,for n 1 1 Corresponding Author:mathematicsdept@vpcollegenet 1

Definition The k Lucas sequence {L k,n } n N is defined as, L k,n+1 kl k,n + L k,n 1, with L k,0, L k,1 k,for n 1 Characteristic equation of the initial recurrence relation is, characteristic roots are r kr 1 0, (1) r 1 k + k + r k k +, Characteristic roots verify the properties, r 1 r k +, () r 1 + r k, (3) Binet forms for F k,n L k,n are r 1 r 1 () F k,n rn 1 rn r 1 r (5) L k,n r n 1 + r n (6) From the definition of the k Fibonacci numbers,one may deduce the value of any k-fibonacci number by simple substitution on the corresponding F k,n For example,the seventh element of the Fibonacci sequence, F,7 is 573 By doing k 1; ; 3; the respective k-fibonacci sequences are obtained Sequence {F 1,n } is the classical Fibonacci sequence {F,n } is the Pell sequence It is worthy to be noted that only the first 10 k Fibonacci sequences are referenced in The On- Line Encyclopedia of Integer Sequences 11 with the numbers given in Table 1 For k even with 1 k 6 sequences {F k,n } are referenced without the first term F k,0 0 in 11 The first 11k-Fibonacci sequences as numbered in The On-Line Encyclopedia of Integer Sequences 10: F 1,n F,n F 3,n F,n F 5,n F 6,n F 7,n F 8,n F 9,n F 10,n F 11,n A00005 A00019 A006190 A001076 A05918 A005668 A0513 A0105 A099371 A0101 A09666

The most commonly used matrix in relation to the recurrence relation(1) is k 1 M 1 0 (7) which for k 1 reduces to the ordinary Q-matrix,8 In this paper we define more general matrices M k (n, m), T k (n), S k (n, m) We use these matrices to develop various summation identities involving terms from the sequences F k,n L k,n Several identities for F k,n L k,n are proved using Binet forms in 1,3 5Some of these are listed below F k,n+1 + F k,n 1 L k,n (8) F k,n+1 + L k,n 1 F k,n (9) F k,n ( 1) n F k,n (10) F k,m+n ( 1) m L k,n m F k,m L k,n (11) L k,m+n ( 1) m L k,n m F k,m F k,n (1) F k,m+n F k,n m F k,n ( 1)n m+1 F k,m (13) L k,m+n L k,n m L k,n ( 1)n m F k,m (1) F k,m+n F k,r+m ( 1) m F k,n F k,r F k,m F k,n+r+m (15) L k,mn L k,n + F k,mn F k,n L k,(m+1)n (16) F k,mn L k,n + L k,mn F k,n F k,(m+1)n (17) L k,m+n + ( 1)m 1 L k,n F k,n+mf k,m (18) L k,m+n L k,n + ( 1) m+1 L k,n m L k,n F k,n F k,m (19) F k,m+rn F k,n+m + ( 1) m+1 F k,rn F k,n F k,(r+1)n+m F k,m (0) In 1matrix M is generalized using PMI M n Fk,n+1 F k,n where n is an integer F k,n F k,n 1 (1) 3

Lemma 3 If X is a square matrix with X kx +I, then X n F k,n X +F k,n 1 I, for all n Z Corollary Let,M k 1 1 0, then M n Fk,n+1 F k,n F k,n F k,n 1 Proof Since, M km + I F k,n M + F k,n 1 I(UsingLemma1) kfk,n F k,n Fk,n 1 0 + F k,n 0 0 F k,n 1 Fk,n+1 F k,n, F k,n F k,n 1 for all n Z Corollary 5 Let,S k k k Lk,n, then S n F k,n ( )F k,n L k,n,for every n Z Lemma 6 L k,n F k,n ( 1)n for all,n Z Proof Since, Moreover since, We get, Thus it follows that, det(s) 1 det(s n ) det(s) n ( 1) n S n Lk,n F k,n det(s n ) L k,n F k,n L k,n F k,n L k,n F k,n ( 1)n, for all n Z

Lemma 7 L k,n+m L k,n L k,m + F k,n F k,m F k,n+m F k,n L k,m + L k,n F k,m for all n, m Z Proof Since, S n+m S n S m Lk,n F k,n Lk,m F k,m F k,n L k,n F k,m L k,m Lk,n L k,m + F k,n F k,m L k,n F k,m +F k,n L k,m L k,n F k,m +F k,n L k,m L k,n L k,m + F k,n F k,m But, Gives, Lemma 8 S n+m Lk,n+m F k,n+m F k,n+m L k,n+m L k,n+m L k,n L k,m + F k,n F k,m F k,n+m F k,n L k,m + L k,n F k,m ( 1) m L k,n m L k,n L k,m F k,n F k,m ( 1) m F k,n m F k,n L k,m L k,n F k,m for all n, m Z for all n, m Z Proof Since, S n m S n S m S n S m 1 Lk,m S n ( 1) m Lk,n ( 1) m F k,m F k,m L k,m F k,n Lk,m F k,m F k,n L k,n F k,m L k,m Lk,n L k,m F k,n F k,m L k,n F k,m F k,n L k,m L k,n F k,m F k,n L k,m L k,n L k,m F k,n F k,m 5

But, Gives, S n m Lk,n m F k,n m F k,n m L k,n m ( 1) m L k,n m L k,n L k,m F k,n F k,m ( 1) m F k,n m F k,n L k,m L k,n F k,m for all n, m Z Lemma 9 ( 1) m L k,n m + L k,n+m L k,n L k,m ( 1) m F k,n m + F k,n+m F k,n L k,m for all n, m Z Proof By definition of the matrix S n,it can be seen that S n+m + ( 1) m S n m Lk,n+m +( 1) m L k,n m F k,n+m +( 1) m F k,n m F k,n+m +( 1) m F k,n m L k,n+m +( 1) m L k,n m On the other h, S n+m + ( 1) m S n m S n S m + ( 1) m S n S m S n S m + ( 1) m S m Lk,n F k,n Lk,m F k,n L k,n F k,m Lk,n F k,n F k,n L k,n Lk,m L k,n F k,n L k,m F k,n L k,m L k,m L k,n Lk,m 0 F k,m L k,m 0 L k,m Lk,m + ( 1) m F k,m F k,m L k,m Gives, ( 1) m L k,n m + L k,n+m L k,n L k,m ( 1) m F k,n m + F k,n+m F k,n L k,m for all n, m Z 6

Lemma 10 8F k,x+y+z L k,x L k,y F k,z + F k,x L k,y L k,z + L k,x F k,y L k,z + F k,x F k,y F k,z 8L k,x+y+z L k,x L k,y L k,z + L k,x F k,y F k,z + F k,x L k,y F k,z + F k,x F k,y L k,z for all x, y, z Z Proof By definition of the matrix S n,it can be seen that S x+y+z Lk,x+y+z F k,x+y+z F k,x+y+z L k,x+y+z On the other h, S x+y+z S x+y S z Lk,x+y F k,x+y Lk,z F k,z F k,x+y L k,x+y F k,z L k,z Lk,x+y L k,z + F k,x+y F k,z L k,x+y F k,z +F k,x+y L k,z L k,z F k,x+y +F k,z L k,x+y L k,x+y L k,z + F k,x+y F k,z Using, L k,x+y L k,x L k,y + F k,x F k,y F k,x+y L k,y F k,x + F k,y L k,x Gives, 8F k,x+y+z L k,x L k,y F k,z + F k,x L k,y L k,z + L k,x F k,y L k,z + F k,x F k,y F k,z 8L k,x+y+z L k,x L k,y L k,z + L k,x F k,y F k,z + F k,x L k,y F k,z + F k,x F k,y L k,z for all x, y, z Z Theorem 11 L k,x+y ( 1)x+y+1 F k,z x L k,x+y F k,y+z ( 1) x+z F k,y+z ( 1)y+z L k,z x for all x, y, z Z Proof Consider matrix multiplication given below Lk,x F k,z F k,x L k,z Lk,y F k,y Lk,x+y F k,y+z 7

Now, det Lk,x F k,z F k,x L k,z L k,xl k,z F k,x F k,z ( 1)x L k,z x Q 0 Therefore we can write Lk,y F k,y 1 Q Lk,x F k,x F k,z L k,z Lk,z F k,x F k,z L k,x 1 Lk,x+y F k,y+z Lk,x+y F k,y+z Gives, Since, We get, L k,y ( 1)x L k,z L k,x+y F k,x F k,y+z L k,z x F k,y ( 1)x L k,x F k,z+y F k,z L k,y+x L k,z x L k,y F k,y ( 1)y L k,z L k,x+y F k,x F k,y+z ( ) L k,x F k,z+y F k,z L k,y+x ( 1) y L k,z x Using Lemma Lemma 6, (L k,z L k,x+y L k,zf k,x+y F k,y+z + Fk,x F k,y+z ) (L k,x F k,y+z L k,xf k,z F k,y+z L k,x+y + Fk,z L k,x+y ) ( 1) y L k,z x Gives, L k,x+y ( 1)x+y+1 F k,z x L k,x+y F k,y+z ( 1) x+z F k,y+z ( 1)y+z L k,z x for all x, y, z Z 8

Theorem 1 L k,x+y ( 1)x+z L k,z x L k,x+y L k,y+z + ( 1) x+z L k,y+z ( 1)y+z+1 F k,z x for all x, y, z Z, x z Proof Consider matrix multiplication, Lk,x L k,z F k,x F k,z Lk,y F k,y Lk,x+y L k,y+z Now, det Lk,x L k,z F k,x F k,z ( 1)x F k,z x P 0, (ifx z) Therefore for x z, we can write Lk,y F k,y 1 P Lk,x F k,x L k,z F k,z (k +)F k,z L k,z 1 Lk,x+y L k,y+z F k,x Lk,x+y L k,x L k,y+z Gives, Since, We get, L k,y ( 1)x F k,z L k,x+y F k,x L k,y+z F k,z x F k,y ( 1)x L k,x L k,z+y L k,z L k,y+x F k,z x L k,y F k,y ( 1)y F k,z L k,x+y F k,x L k,y+z L k,x L k,z+y L k,z L k,y+x ( 1) y F k,z x Using Lemma Lemma 6,We obtain L k,x+y ( 1)x+z L k,z x L k,x+y L k,y+z + ( 1) x+z L k,y+z ( 1)y+z+1 F k,z x for all x, y, z Z, x z 9

Theorem 13 F k,x+y L k,x zf k,x+y F k,y+z + ( 1) x+z F k,y+z ( 1)y+z F k,z x for all x, y, z Z, x z Proof Consider matrix multiplication, Fk,x F k,z F k,x L k,z Lk,y F k,y Fk,x+y F k,y+z Now, det Fk,x F k,z F k,x L k,z ( 1)z F k,x z T 0, (ifx z) Therefore for x z, we get, Lk,y F k,y 1 T Fk,x F k,x F k,z L k,z Lk,z L k,x F k,z F k,x 1 Fk,x+y F k,y+z Fk,x+y F k,y+z Gives, Now consider,, L k,y ( 1)z L k,z F k,x+y L k,x F k,y+z F k,x z F k,y ( 1)z F k,x F k,z+y F k,z F k,y+x F k,x z L k,z F k,x+y L k,x F k,y+z F k,x F k,z+y F k,z F k,y+x ( 1) y F k,x z Using Lemma Lemma 6,We get F k,x+y L k,x zf k,x+y F k,y+z + ( 1) x+z F k,y+z ( 1)y+z F k,z x for all x, y, z Z, x z 10

3 Main Results Theorem 31 Let n N m, t Z with m 0,Then L k,mj+t L k,t L k,mn+m+t + ( 1) m (L k,mn+t L k,t m ) 1 + ( 1) m L k,m (1) F k,mj+t F k,t F k,mn+m+t + ( 1) m (F k,mn+t F k,t m ) 1 + ( 1) m L k,m () Proof It is known that, If det(i S m ) 0, then we can write I (S m ) n+1 (I S m ) (S m ) j 1 I (S m ) 1 (I (S m ) n+1 )S t (S mj+t ) From lemma () det(i S m ) (1 L k,m ) (F k,m) (L k,mj+t) (F k,mj+t) 1 (F 1 k,mj+t) (L k,mj+t) 1 + ( 1) m L k,m 0 For m 0,If we take D 1 + ( 1) m L k,m,then we get (I S m ) 1 1 1 (L k,m) (F k,m) (F D k,m ) 1 (L k,m) 1 (1 (L k,m) )I + (F k,m) R D Thus it is seen that, (I S m ) 1 (S t S mn+m+t ) 1 D (1 (L k,m) )I + (F k,m) R (S t S mn+m+t ) (3) (I S m ) 1 (S t S mn+m+t ) 1 D (1 (L k,m) )(S t S mn+m+t ) + (F k,m) R(S t S mn+m+t ) () By Corollary () (3) we get R(S t S mn+m+t ) (F k,t F k,mn+m+t ) (L k,t L k,mn+m+t ) (L k,t L k,mn+m+t ) (F k,t F k,mn+m+t ) (5) 11

Using in 3, we obtain (I S m ) 1 (S t S mn+m+t ) 1 D (1 L k,m ) + F k,m D (L k,t L k,mn+m+t ) (F k,t F k,mn+m+t ) (F k,t F k,mn+m+t ) (L k,t L k,mn+m+t ) (F k,t F k,mn+m+t ) (L k,t L k,mn+m+t ) (L k,t L k,mn+m+t ) (F k,t F k,mn+m+t ) Thus from () it follows that L k,mj+t 1 D 1 D Using Lemma(6) (1 L k,m )(L k,t L k,mn+m+t ) + F k,m (F k,t F k,mn+m+t L k,t L k,mn+m+t L k,ml k,t F k,m F k,t + L k,ml k,mn+m+t F k,m F k,mn+m+t On the other h, by (3) () we get F k,mj+t 1 D 1 D Using Lemma(6) it follows that L k,mj+t L k,t L k,mn+m+t + ( 1) m (L k,mn+t L k,t m ) 1 + ( 1) m L k,m (1 L k,m )(F k,t F k,mn+m+t ) + F k,m (L k,t L k,mn+m+t F k,t F k,mn+m+t L k,mf k,t F k,m L k,t + L k,mf k,mn+m+t F k,m L k,mn+m+t F k,mj+t F k,t F k,mn+m+t + ( 1) m (F k,mn+t F k,t m ) 1 + ( 1) m L k,m Theorem 3 Let n N m, t Z,Then ( 1) j L k,mj+t L k,t L k,mn+m+t + ( 1) m (L k,mn+t L k,t m ) 1 + ( 1) m (6) L k,m ( 1) j F k,mj+t F k,t F k,mn+m+t + ( 1) m (F k,mn+t F k,t m ) 1 + ( 1) m (7) L k,m 1

Proof We prove the theorem in two cases by taking n as an even odd natural number Case:1 If n is an even natural number I + (S m ) n+1 (I + S m ) (S m ) j Since, det(i + S m ) 1 + ( 1) m + L k,m 0, then using Lemma6 we can write 1 I+(S m ) 1 (I+(S m ) n+1 )S t ( 1) j (S mj+t ) 1 If we take d 1 + ( 1) m + L k,m,then we get (I + S m ) 1 1 1 + (L k,m) d 1 (1 + (L k,m) d Thus it is seen that, (I + S m ) 1 (S t + S mn+m+t ) 1 d By Corollary () R S + S 1 we get R(S t + S mn+m+t ) Using (8) in (7), we obtain ( 1)j (L k,mj+t ) ( 1)j (F k,mj+t ) 1 (F k,m) ( F k,m ) 1 + (L k,m) )I (F k,m) R (1 + (L k,m) (I + S m ) 1 (S t + S mn+m+t ) 1 d (1 + L k,m ) Thus from (7) it follows that ( 1) j L k,mj+t 1 d 1 d ( 1)j (F k,mj+t ) ( 1)j (L k,mj+t ) )I (F k,m) R (S t + S mn+m+t ) (F k,t+f k,mn+m+t ) (L k,t+l k,mn+m+t ) (L k,t +L k,mn+m+t ) (F k,t+f k,mn+m+t ) F k,m d (L k,t+l k,mn+m+t ) (F k,t+f k,mn+m+t ) (F k,t +F k,mn+m+t ) (L k,t +L k,mn+m+t ) (F k,t+f k,mn+m+t ) (L k,t+l k,mn+m+t ) (L k,t +L k,mn+m+t ) (F k,t+f k,mn+m+t ) (1 + L k,m )(L k,t + L k,mn+m+t ) F k,m (F k,t + F k,mn+m+t L k,t + L k,mn+m+t + L k,ml k,t F k,m F k,t + (L k,m L k,mn+m+t F k,m F k,mn+m+t ) Using Lemma(6) fact that d 1 + ( 1) m + L k,m we obtain ( 1) j L k,mj+t L k,t + L k,mn+m+t + ( 1) m (L k,mn+t + L k,t m ) 1 + ( 1) m + L k,m (8) (9) 13

Similarly it can be easily seen that by using Lemma(6) ( 1) j F k,mj+t F k,t + F k,mn+m+t + ( 1) m (F k,mn+t + F k,t m ) 1 + ( 1) m + L k,m Case: If n is an odd natural number Since n is an odd natural number, we get ( 1) j L k,mj+t 1 ( 1) j L k,mj+t L k,mn+t (30) Since n is an odd natural number then (n 1) is an even Then taking (n 1) in (5) using it in (9), it follows that, ( 1) j L k,mj+t L k,t + L k,mn+t + ( 1) m (L k,mn m+t + L k,t m ) 1 + ( 1) m L k,mn+t + L k,m Using Lemma(7) we obtain L k,t + ( 1) m (L k,mn m+t + L k,t m ) ( 1) m L k,mn+t L k,m L k,mn+t 1 + ( 1) m + L k,m ( 1) j L k,mj+t L k,t + L k,mn m+t + ( 1) m (L k,t m L k,mn+t ) 1 + ( 1) m (31) + L k,m In similar way it can be seen that, ( 1) j F k,mj+t Using (5) in (3), it follows that, 1 ( 1) j F k,mj+t F k,mn+t (3) ( 1) j F k,mj+t F k,t + F k,mn+t + ( 1) m (F k,mn m+t + L k,t m ) 1 + ( 1) m F k,mn+t + L k,m Using Lemma(7) we get expected formula F k,t + ( 1) m (F k,mn m+t + F k,t m ) ( 1) m F k,mn+t L k,m L k,mn+t 1 + ( 1) m + L k,m ( 1) j F k,mj+t F k,t L k,mn+m+t + ( 1) m (F k,t m F k,mn+t ) 1 + ( 1) m (33) + L k,m Conclusion: Some new summation identities have been obtained for the k Fibonacci k Lucas sequences 1

References 1 AF Horadam Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci QuarterlyVol3,No3 (1965): pp61-76 Falcon S, Plaza A, On the k Fibonacci numbers, Chaos,Solitons Fractals,Vol5, No3, (007), pp1615-16 3 Koshy T,Fibonacci Lucas numbers with applications, Wiley-Intersection Pub,(001) ME Waddill, Matrices Generalized Fibonacci Sequences,The Fibonacci Quarterly,Vol55, No1, (197), pp381-386 5 P Filipponi A F Horadam A Matrix Approach to Certain Identities, The Fibonacci Quarterly,Vol6,No (1988):pp115-16, 6 H W Gould A History of the Fibonacci g-matrix a Higher-Dimensional Problem,The Fibonacci Quarterly,Vol19,No3 (1981):pp50-57, 7 Vajda S,Fibonacci Lucas numbers, the Golden Section:Theory applications, Chichester:Ellis Horwood,(1989) 8 AF Horadam, Jacobstal Representation of Polynomials, The Fibonacci Quarterly,Vol35,No (1997):pp137-18, 9 Strang G,Introduction to Linear Algebra,Wellesley-Cambridge:Wellesley, MA Pub,(003) 10 Sloane N J A, The on-line encyclopedia of integer sequences, 006 11 Falcon S, Plaza A, On the Fibonacci k numbers, Chaos,Solitons Fractals 3(5) (007) 1615-1 Falcon S, Plaza A, The k Fibonacci sequence the Pascal triangle, Chaos,Solitons Fractals 33(1) (007) 38-9 13 Falcon S, Plaza A, The k Fibonacci hyperbolic functions, Chaos,Solitons Fractals 38() (008) 09-0 1 AD Godase, MB Dhakne,On the properties of k-fibonacci k-lucas numbers,international Journal of Advances in Applied Mathematics Mechanics, Vol0 (01):pp100-106 (Concerned with sequences A00005,A0101) 15