Supplementary Information. Structure and Electrochemical Performance

Similar documents
Report muestra del Pk entre 6,6 6,9m, no alterada.

Electronic Supplementary Information

Supplementary Information for. Red Phosphorus as High-Performance Anode Materials for Naion. Batteries

Electronic Supplementary Information

Content 1. Abstract Introduction Synthesis of Copper Oxide and Cell Fabrication Preparation of macron-size CuO via molten salt

Supporting Information

Electronic Supplementary Information

Layered Sb 2 Te 3 and its nanocomposite: A new and outstanding electrode material for superior rechargeable Li-ion batteries

Magnetic Liposomes based on Nickel Ferrite Nanoparticles for Biomedical Applications

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries

Supporting Information

Mg, Zn) as High Voltage Layered Cathodes for

Supporting Information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION. Lamuel David, Romil Bhandavat and Gurpreet Singh*

Electronic Supplementary Information

Origins and mechanism of phase transformation in bulk Li 2 MnO 3 : First-principles calculation and experimental study

Supporting Information

Supporting Information

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution

[Supporting information]

Supplementary Information

Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan Li, Jing Chen and Jiangshan Zhang

Sodium-difluoro(oxalato)borate (NaDFOB): A new. electrolyte salt for Na-ion batteries

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Supplementary Information

Enhancing potassium-ion battery performance by defect and. interlayer engineering

Supporting information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Electronic Supplementary Information (ESI)

Supplementary Figures

Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery 1. Experimental 1.1 Chemicals

Micro/Nanostructured Li-rich Cathode Materials with. Enhanced Electrochemical Properties for Li-ion. Batteries

Unexpected effects of Zr-doping in the high performance sodium manganese-based layer-tunnel cathode

Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes

Supporting Information

It is known that the chemical potential of lithium ion in the cathode material can be expressed as:

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries

Boosting rate capability of hard carbon with an ether-based. electrolyte for sodium ion batteries

Defense Technical Information Center Compilation Part Notice

Electronic Supplementary Information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Supporting Information of

Supporting Information

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries

Supporting Information

Supplementary Figure 1 Structure of InHCF. a, Selected-area electron diffraction pattern of individual InHCF nanocube (scale bar 5 nm -1 ).

Supporting Information. Electrochemical & Thermal-Stability Investigation

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Electronic Supplementary Information

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang *

Precious Metal-free Electrode Catalyst for Methanol Oxidations

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol

Supporting Information

Supporting Information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries

Supporting Information for. Electrochemical Water Oxidation Using a Copper Complex

A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries

Supporting Information

Supporting Information for

unique electronic structure for efficient hydrogen evolution

Supporting information. School of optoelectronic engineering, Nanjing University of Post &

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells

Self-discharge of electrochemical capacitors based on soluble or grafted quinone

Saltwater as the energy source for low-cost, safe rechargeable. batteries

White Nights Science. New Concepts in Energy Storage. Meeting & Summer School in Tallinn on. June

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

sodium ion battery synthesized by a soft chemistry route

ScienceDirect. Synthesis of NiO Nanoparticles through Sol-gel Method

Supporting Information

Highly stable and flexible Li-ion battery anodes based on TiO 2 coated

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

Supporting Information

Electronic Supplementary Information (ESI )

Effect of Ball Milling on Electrocatalytic Activity of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 toward Oxygen Evolution Reaction

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries

Supporting information:

Electronic Supplementary Information. Concentrated Electrolytes Stabilize Bismuth-Potassium Batteries

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium-

Electronic Supplementary Information for. Impact of Intermediate Sites on Bulk Diffusion Barriers: Mg. Intercalation in Mg 2 Mo 3 O 8

Supporting Information. Integration of accessible secondary metal sites into MOFs for H 2 S removal

Basics of XRD part III

Supplementary Information

Supporting Information

Electronic Supplementary Information

Low-activated Li-Ion Mobility and Metal to Semiconductor Transition in CdP Phases

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supplementary Information P-type Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 Materials: Linking Synthesis to Structure and Electrochemical Performance L. G. Chagas a,b, D. Buchholz a,b *, C. Vaalma a,b, L. Wu a,b and S. Passerini a * a Helmholtz Institute Ulm (HIU) Electrochemistry I c, Albert-Einstein-Allee 11, 89081 Ulm, Germany. b Institute of Physical Chemistry, University of Muenster, Corrensstrasse 28/30, Muenster, 48149, Germany. c Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany * Corresponding authors: daniel.buchholz@kit.edu, stefano.passerini@kit.edu 1

1. Energy Dispersive X-ray Spectroscopy For the verification of the stoichiometry, Energy Dispersive X-ray analyses (EDX) were performed on the NaxNi0.22Co0.11Mn0.66O2 (NaNCM) powder. Table SI-1. Results for the chemical characterization via energy dispersive X-ray analyses (EDX) performed on the NaxNi0.22Co0.11Mn0.66O2. Stoichiometry O Na Mn Co Ni Measured 32.85 10.75 37.18 6.59 12.62 Calculated 2.053125 0.467391 0.6772313 0.111885 0.214991 Normalized 2.00 0.46 0.66 0.11 0.21 2

2. Rietveld Refinement 2.1 700 C R-Values Rexp 1.93 Rwp 4.59 Rp 3.42 GOF 2.38 Rexp` 3.31 Rwp` 7.87 Rp` 6.32 DW 0.36 Quantitative Analysis - Rietveld Phase 1: P3 100.000 % Background One on X 49400(5000) Chebychev polynomial, Coefficient 0 1070(140) 1 640(110) 2-467(48) 3 304(19) 4-50.0(80) Corrections Specimen displacement 0.2580(40) LP Factor 0 Structure 1 Phase name P3 R-Bragg 1.505 Spacegroup R3m Scale 0.005752(87) Cell Mass 293.993 Cell Volume (Å^3) 119.862(18) Wt% - Rietveld 100.000 Lattice parameters a (Å) 2.86618(12) c (Å) 16.8478(20) Site Np x y z Atom Occ Beq Na1 3 0.00000 0.00000 0.17216 Na+1 0.45 0 Ni1 3 0.00000 0.00000 0.00000 Ni+2 0.22 0 Co1 3 0.00000 0.00000 0.00000 Co+3 0.11 0 Mn1 3 0.00000 0.00000 0.00000 Mn+4 0.66 0 O1 3 0.00000 0.00000-0.39121 O-2 1 0 O2 3 0.00000 0.00000 0.39121 O-2 1 0 2.2 750 C R-Values Rexp 3.97 Rwp 5.83 Rp 4.59 GOF 1.47 Rexp` 1.84 Rwp` 2.70 Rp` 2.39 DW 0.92 Quantitative Analysis - Rietveld Phase 1: P3 69.54(42) % 3

Phase 2: P2 30.46(42) % Background One on X 47000(1200) Chebychev polynomial, Coefficient 0-742(33) 1 1094(28) 2-477(12) 3 180.0(49) 4-63.0(22) Corrections Specimen displacement -0.0091(38) LP Factor 0 Structure 1 Phase name P3 R-Bragg 2.495 Spacegroup R3m Scale 0.001093(13) Cell Mass 293.993 Cell Volume (Å^3) 119.062(28) Wt% - Rietveld 69.54(42) Lattice parameters a (Å) 2.86040(21) c (Å) 16.8030(31) Site Np x y z Atom Occ Beq Na1 3 0.00000 0.00000 0.17121 Na+1 0.45 0 Ni1 3 0.00000 0.00000 0.00000 Ni+2 0.22 0 Co1 3 0.00000 0.00000 0.00000 Co+3 0.11 0 Mn1 3 0.00000 0.00000 0.00000 Mn+4 0.66 0 O1 3 0.00000 0.00000 0.39121 O-2 1 0 O2 3 0.00000 0.00000-0.39121 O-2 1 0 Structure 2 Phase name P2 R-Bragg 3.413 Spacegroup P63/mmc Scale 0.001079(17) Cell Mass 195.995 Cell Volume (Å^3) 79.210(14) Wt% - Rietveld 30.46(42) Lattice parameters a (Å) 2.85936(18) c (Å) 11.1869(13) Site Np x y z Atom Occ Beq Mn1 2 0.00000 0.00000 0.00000 Mn+4 0.66 0 Ni1 2 0.00000 0.00000 0.00000 Ni+2 0.22 0 Co1 2 0.00000 0.00000 0.00000 Co+3 0.11 0 Na1 2 0.00000 0.00000 0.25000 Na+1 0.225 0 Na2 2 0.33333 0.66667 0.75000 Na+1 0.225 0 O1 4 0.33333 0.66667 0.08720 O-2 1 0 4

2.3 800 C R-Values Rexp 2.03 Rwp 6.06 Rp 4.32 GOF 2.98 Rexp` 2.09 Rwp` 6.21 Rp` 4.76 DW 0.34 Quantitative Analysis - Rietveld Phase 1: P3 100.000 % Background One on X 77300(2100) Chebychev polynomial, Coefficient 0 33(57) 1 1474(50) 2-577(20) 3 222.2(88) Corrections Specimen displacement 0.12778(74) LP Factor 0 Structure 1 Phase name P2 R-Bragg 3.195 Spacegroup P63/mmc Scale 0.017579(94) Cell Mass 195.995 Cell Volume (Å^3) 79.61964 Wt% - Rietveld 100.000 Lattice parameters a (Å) 2.86289(03) c (Å) 11.21708(93) Site Np x y z Atom Occ Beq Mn1 2 0.00000 0.00000 0.00000 Mn+4 0.66 0 Ni1 2 0.00000 0.00000 0.00000 Ni+2 0.22 0 Co1 2 0.00000 0.00000 0.00000 Co+3 0.11 0 Na1 2 0.00000 0.00000 0.25000 Na+1 0.225 0 Na2 2 0.33333 0.66667 0.75000 Na+1 0.225 0 O1 4 0.33333 0.66667 0.08720 O-2 1 0 2.4 850 C R-Values Rexp 2.94 Rwp 7.39 Rp 5.01 GOF 2.51 Rexp` 5.48 Rwp` 13.77 Rp` 10.34 DW 0.56 Quantitative Analysis - Rietveld Phase 1: P3 100.000 % Background One on X 14974.08 5

Chebychev polynomial, Coefficient 0 568.9367 1 192.228 2-76.04768 3 25.80076 Corrections Specimen displacement 0.1330279 LP Factor 0 Structure 1 Phase name P2 R-Bragg 5.529 Spacegroup P63/mmc Scale 0.00820727(66) Cell Mass 195.995 Cell Volume (Å^3) 79.61123 Wt% - Rietveld 100.000 Lattice parameters a (Å) 2.86315(10) c (Å) 11.2138614 Site Np x y z Atom Occ Beq Mn1 2 0.00000 0.00000 0.00000 Mn+4 0.66 0 Ni1 2 0.00000 0.00000 0.00000 Ni+2 0.22 0 Co1 2 0.00000 0.00000 0.00000 Co+3 0.11 0 Na1 2 0.00000 0.00000 0.25000 Na+1 0.225 0 Na2 2 0.33333 0.66667 0.75000 Na+1 0.225 0 O1 4 0.33333 0.66667 0.08720 O-2 1 0 2.5 900 C R-Values Rexp 2.89 Rwp 9.74 Rp 6.21 GOF 3.37 Rexp` 5.17 Rwp` 17.42 Rp` 12.38 DW 0.51 Quantitative Analysis - Rietveld Phase 1: P3 100.000 % Background One on X 14621.81 Chebychev polynomial, Coefficient 0 571.7795 1 179.0797 2-71.77887 3 26.75187 Corrections Specimen displacement 0.1176249 LP Factor 0 Structure 1 Phase name P2 R-Bragg 7.503 6

Spacegroup P63/mmc Scale 0.008791748(67) Cell Mass 195.995 Cell Volume (Å^3) 79.61510 Wt% - Rietveld 100.000 Lattice parameters a (Å) 2.86401(23) c (Å) 11.20766(29) Site Np x y z Atom Occ Beq Mn1 2 0.00000 0.00000 0.00000 Mn+4 0.66 0 Ni1 2 0.00000 0.00000 0.00000 Ni+2 0.22 0 Co1 2 0.00000 0.00000 0.00000 Co+3 0.11 0 Na1 2 0.00000 0.00000 0.25000 Na+1 0.225 0 Na2 2 0.33333 0.66667 0.75000 Na+1 0.225 0 O1 4 0.33333 0.66667 0.08720 O-2 1 0 Table SI-2. Comparison of the 1 st charge capacity, Na content equivalent and lattice parameters of NaxNi0.22Co0.11Mn0.66O2 (NaNCM) materials annealed from 700 C to 900 C, for 6. T ( C) Structure type Capacity 1st charge (mah g -1 ) Na eq. per mole of NaNCM a axis (Å) c axis (Å) 700 P3 113.2263 0.414 2.86618 16.8478 750 P3 142.16 0.5198 2.86040 16.8030 750 P2 2.85936 11.1869 800 P2 137.8604 0.5041 2.86289 11.21708 850 P2 133.4476 0.488 2.863151 11.21386 900 P2 132.0907 0.483 2.864012 11.20766 7

3. Influence of Annealing Time on the Structure of NaNCM Figure SI-1. X-ray diffraction patterns of NaxNi0.22Co0.11Mn0.66O2 materials annealed at a) 700 C and b) 800 C, for 6 or 24 h. 8

4. Influence of Annealing Time on the Particle Morphology 4.1 P3-type Material Figure SI-2. Scanning Electron Microscopy images of P3-type NaxNi0.22Co0.11Mn0.66O2 annealed at 700 C for 6h or 24h. In general, both P3-type materials synthesized at 700 C, are composed of nanosized particles with flake-like morphology. The sample annealed at 700 C for 6 hours has smaller particles and an average particle size is between 50 and 200 nm compared to 100 300 nm for the sample annealed for 24 hours. 9

4.2 P2-type material Figure SI-3. Scanning Electron Microscopy images of P2-type NaxNi0.22Co0.11Mn0.66O2 annealed at 800 C for 6h or 24 h at high and low magnification. All P2- NaNCM samples annealed at 800 C for 6 or 24 h are composed of flakelike particles and all samples of particles with an average particle size of 1 3 m. 10

5. Influence of Annealing Time on the Electrochemical Performance Figure SI-4 shows the electrochemical performance of the P3-type NaNCM material annealed at 700 C, for 6 or 24 h. Both materials reveal a very similar electrochemical behavior in terms of capacity, cycling stability and efficiency and exhibit a higher initial capacity fading up to the 20 th cycle leading, e.g., to a capacity retention of about 75% for the material annealed at 700 C for 6 h (7006h). Between the 91 st and 141 st cycle the 7006h material delivers slightly higher discharge capacities of about 95 mah g - 1. The final capacity retention is 55%, accounting for 80 mah g -1 as discharge capacity in the 230 th cycle. Figure SI-4: Specific discharge capacity of NaxNi0.22Co0.11Mn0.66O2 annealed at 700 C for 6 and 24 h. Cut-off limits: 4.3 2.1 V (vs. Na/Na + ). Reference and counter electrode: Na. Electrolyte: 1M NaPF6 in PC. Temperature: 20 ± 2 C. Cycles 1-20, 46-65 and 91-230 were performed at 0.1C (12 ma g 1 ). Cycles 21-45 and 66-90: C-rate test performed at 0.2C (24 ma g 1 ), 0.5C (61 ma g 1 ), 1C (123 ma g 1 ), 2C (246 ma g 1 ) and 5C (615 ma g 1 ). The potential profiles in Figure SI-5 reveal that the annealing time also has only a minor influence on the energy efficiency and rate capability of the P3-type NaNCM materials. 11

Figure SI-5: Potential profiles of NaxNi0.22Co0.11Mn0.66O2 annealed at 700 C for a) 6 h or b) 24 h. The potential profile of the 2 nd, 10 th, 50 th, 150 th and 230 th cycle at 0.1C (12 ma g 1 ) are shown. Cut-off limits: 4.3 2.1 V (vs Na/Na + ). Reference and counter electrodes: Na. Electrolyte: 1M NaPF6 in PC. Temperature: 20 ± 2 C. The arrows indicate the voltage curve evolution during cycling. 12