Available at Appl. Appl. Math. ISSN: Vol. 4, Issue 1 (June 2009) pp (Previously, Vol. 4, No.

Similar documents
1999 by CRC Press LLC

Double Sums of Binomial Coefficients

Power Series Solutions to Generalized Abel Integral Equations

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

OBSERVATIONS ON THE NON- HOMOGENEOUS SEXTIC EQUATION WITH FOUR UNKNOWNS

Observations on the Non-homogeneous Quintic Equation with Four Unknowns

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

Chap8 - Freq 1. Frequency Response

Intermediate Applications of Vectors and Matrices Ed Stanek

Convergence rates of approximate sums of Riemann integrals

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Opial inequality in q-calculus

Abel Resummation, Regularization, Renormalization & Infinite Series

( ) dx ; f ( x ) is height and Δx is

The Basic Properties of the Integral

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

OBSERVATIONS ON THE NON- HOMOGENEOUS QUINTIC EQUATION WITH FIVE UNKNOWNS

Maximum Likelihood Estimation of Two Unknown. Parameter of Beta-Weibull Distribution. under Type II Censored Samples

Note 7 Root-Locus Techniques

lecture 16: Introduction to Least Squares Approximation

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

Crushed Notes on MATH132: Calculus

Limit of a function:

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

General properties of definite integrals

Probability for mathematicians INDEPENDENCE TAU

Convergence rates of approximate sums of Riemann integrals

All the Laplace Transform you will encounter has the following form: Rational function X(s)

Una nueva clase de polinomios q-apostol-bernoulli de orden α. A new class of q-apostol-bernoulli polynomials of order α.

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Chapter #5 EEE Control Systems

Numerical Integration by using Straight Line Interpolation Formula

ENGINEERING PROBABILITY AND STATISTICS

Important Facts You Need To Know/Review:

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

{ } { S n } is monotonically decreasing if Sn

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

POWER SERIES R. E. SHOWALTER

International Journal of Mathematical Archive-5(1), 2014, Available online through ISSN

A VERSION OF THE KRONECKER LEMMA

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

Multiplicative Versions of Infinitesimal Calculus

Chapter #2 EEE Subsea Control and Communication Systems

Integral Operator Defined by k th Hadamard Product

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

Research & Reviews: Journal of Statistics and Mathematical Sciences

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling

Chapter 7 Infinite Series

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

Review of the Riemann Integral

ROBUST STABILITY OF CONVEX COMBINATION OF TWO FRACTIONAL DEGREE CHARACTERISTIC POLYNOMIALS

On The Homogeneous Quintic Equation with Five Unknowns

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Series acceleration formulas for beta values

1 Tangent Line Problem

King Fahd University of Petroleum & Minerals

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

a f(x)dx is divergent.

Sequence and Series of Functions

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Research Article Refinements of Aczél-Type Inequality and Their Applications

Isolating the Polynomial Roots with all Zeros Real

Course 121, , Test III (JF Hilary Term)

1.3 Continuous Functions and Riemann Sums

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Chapter Real Numbers

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

The Definite Riemann Integral

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS *

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Abel type inequalities, complex numbers and Gauss Pólya type integral inequalities

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

Linear Programming. Preliminaries

5.1 - Areas and Distances

moment = m! x, where x is the length of the moment arm.

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Basic Limit Theorems

Schrödinger Equation Via Laplace-Beltrami Operator

The Reimann Integral is a formal limit definition of a definite integral

The Kumaraswamy Generalized Power Weibull Distribution

Section IV.6: The Master Method and Applications

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

ROUTH-HURWITZ CRITERION

Indices and Logarithms

Transcription:

Aville t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 4, Iue 1 (Jue 29) pp. 26 39 (Previouly, Vol. 4, No. 1) Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) O Geerlized Hurwitz-Lerch Zet Ditriutio Mridul Grg 1, Kumum Ji 1 d S. L. Kll 2* 1 Deprtmet of Mthemtic Uiverity of Rjth Jipur, Idi grgmridul@gmil.com, umumji_eem@yhoo.com 2 Deprtmet of Mthemtic d Computer Sciece Kuwit Uiverity P.O. Box 5969, Sft 136, Kuwit hymll@gmil.com Received: July 1, 28; Accepted: Jury 16, 29 Atrct I thi pper, we itroduce fuctio, ;(,, z), which i exteio to the geerl Hurwitz-Lerch Zet fuctio. Hvig defied the icomplete geerlized et type-2 d icomplete geerlized gmm fuctio, ome differetitio formule re etlihed for thee icomplete fuctio. We hve itroduced two ew ttiticl ditriutio, termed geerlized Hurwitz-Lerch Zet et type-2 ditriutio d geerlized Hurwitz-Lerch Zet gmm ditriutio d the derived the expreio for the momet, ditriutio fuctio, the urvivor fuctio, the hzrd rte fuctio d the me reidue life fuctio for thee ditriutio. Grph for oth thee ditriutio re give, which reflect the role of hpe d cle prmeter. Keyword: Riem Zet Fuctio; Lerch Zet Fuctio; Geerl Hurwitz-Lerch Zet Fuctio; Gu Hypergeometric Fuctio; Bet Type-2 Ditriutio; Gmm Ditriutio; Pl Ditriutio MSC (2) No.: 11M35, 6E5 * Correpodig uthor 26

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 27 1. Itroductio A geerl Hurwitz-Lerch Zet fuctio Φ(z,,) i defied i the followig mer i the oo y Erdelyi et l. ( 1953) z (,, z), ( ) (1.1) (, 1, 2,..., C, whe z 1 d Re( ) 1, whe z 1). It coti, it pecil ce, the Riem Zet fuctio d Hurwitz Zet fuctio, defied follow 1 () (1,,1), Re() 1 (1.2) ( ) d 1 (, ) (1,, ), Re() 1,, 1, 2,.... (1.3) ( ) A exteio to the geerl Hurwitz-Lerch Zet fuctio (1.1) i defied i the erie form,, ; ( ) ( ) z (,, z), (1.4) ( )! ( ) (,, 1, 2,..., C, whe z 1d Re( ), whe z =1), d equivletly i the itegrl form, 1 1 t t, ; 2 1 () (,, z) t e F(, ; ; ze ) dt, (1.5) (Re( ) ;, 1, 2,...,Re( ) d z 1 or z 1 with Re( ) ), where 2 F 1 (, ; ;z) i the Gu hypergeometric fuctio defied i Riville (196). We c eily oti other itegrl repreettio of, ;(,, z), give y ( ) 1 tz, ;(,, ) (1 ) (,, ) ( ) ( ) 1t z t t dt, (1.6) ( Re( ), Re( ),, 1, 2,...; C, whe z 1d Re( ), whe z 1), where

28 Kll el l. ( ) z (,, z) (1.7)! ( ) (, 1, 2,..., C, whe z 1d Re( ), whe z 1), i geerlized Hurwitz- Lerch Zet fuctio, defied y Goyl d Lddh (1997). Specil Ce (i) If we te β = 1 i (1.4), we rrive t geerliztio of Hurwitz-Lerch Zet fuctio, defied y Li d Srivtv (24) (1,1) ( ) z,1; (,, z), (,, z), (1.8) ( ) ( ) (,, 1, ; C, whe z 1 d Re( ) 1, whe z 1). (ii) If we te β = γ i (1.4), we get (1.7). (iii) Tig β = γ d α = 1 i (1.4), we get geerl Hurwitz-Lerch Zet fuctio (1.1). 2. The Geerlized Icomplete Fuctio The icomplete geerlized et type-2 fuctio i defied y x, x ( ) 1, ; tz B (,, z) t (1 t) (,, dt ) ( ) ( ) (2.1) 1t ( Re( ),, 1, 2,...; C, whe z 1d Re( ), whe z 1) d the complemetry icomplete geerlized et type-2 fuctio i ( ) 1, ; x tz B (,, z) t (1 t) (,, dt ) ( ) ( ), (2.2) 1t ( Re( ),, 1, 2,..., C, whe z 1 d Re( ), whe z 1). We, thu, hve (,, z) B (,, z) B (,, z). (2.3),, ;, ;, ; The icomplete geerlized gmm fuctio i defied y

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 29 x, x 1 t t, ; 2 1 () o (,, z,) t e F(, ; ; ze ) dt, (2.4) (γ, -1, -2, ; Re() > ; z <1 or z = 1, with Re(γ-α-β) > ), where the complemetry icomplete geerlized gmm fuctio i give y 1 t t, ; 2 1 () x (,, z,) t e F(, ; ; ze ) dt, (2.5) ( Re( ), Re( );, 1, 2,..., z 1 or z 1, with Re( ) ). It c e eily verified tht, x, ;(,, z ), ;(,, z,)+, ;(,, z,). (2.6) 3. Differetitio Formule Performig differetitio uder the ig of itegrtio y Leiitz rule i equtio (2.1), (2.2), (2.4) d (2.5), we oti the followig differetitio formule for the icomplete geerlized et type-2 fuctio d the icomplete geerlized gmm fuctio d 1, x, x ) xz [ x B, ;( z,, )] (1 ) x B, ;( z,, ) (1 x) (,, ), ( ) ( ) 1x (3.1) d, x 1, x ( ) 1 xz [(1 x) B, ;( z,, )] (1 x) B, ;( z,, ) x (,, ), (3.2) ( ) ( ) 1x d 1 ( ) xz [ x B, ;( z,, )] (1 ) x B, ;( z,, ) (1 x) (,, ), (3.3) ( ) ( ) 1x d 1 ( ) 1 xz [(1 x) B, ;( z,, )] (1 x) B, ;( z,, ) x (,, ), (3.4) ( ) ( ) 1x d 1, x, x x x [ x, ;( z,,, )] (1 ) x, ;( z,,, ) e 2F1(, ; ; ze ), (3.5) ()

3 Kll el l. 2 d x, x x, x 1 x 4c [ e, ;( z,,, )] e, ;( z,,, ) x 2F1(, ; ; ze ) () 2, (3.6) d 1 x x [ x, ;( z,,,, )] (1 ) x, ;( z,,, ) e 2F1(, ; ; ze ), () (3.7) d x x 1 x [ e, ;( z,,, )] e, ;( z,,, ) x 2F1(, ; ; ze ). (3.8) () 4. The Geerlized Hurwitz-Lerch Zet Bet type-2 Ditriutio Specil fuctio ply igifict role i the tudy of proility deity fuctio (pdf) ee, for exmple, Leedev (1965), Mthi d Sxe (1973, 1978) Mthi (1993), Joho d Kotz [197(), 197()] etc. Some well-ow et type-2 ditriutio re et type-2 ocetrl, et type-2 iverted, et type-2 three prmeter, et type-2 ocited with chi qure, Preto ditriutio of 2 d id d Fiher F ditriutio. A geerliztio of F ditriutio i defied d tudied y Mli (1967). More ditriutio of et type-2 hve ee defied d tudied y Mthi d Sxe (1971), Grg d Gupt (1997) d Be-Nhi d Kll (22, 23), ivolvig certi pecil fuctio. The geerlized Hurwitz-Lerch Zet et type-2 pdf of rdom vrile x i defied f(x) = 1 xz ( ) x (1 x) (,, ) 1 x, x, ( ) ( ), ;( z,, ), elewhere, (4.1) where (z,,) d, ;(,, z) re defied y (1.7) d (1.4), repectively, together with followig dditiol coditio: (i) γ > β >,, -1, ; є R, whe z <1 d -α >, whe z =1. (ii) The prmeter ivolved i (4.1) re o retricted tht f ( x ) remi o-egtive for x >. Here, β d γ re hpe prmeter, where z repreet the cle prmeter. It i ey to verify tht f( x) 1. We oerve tht the ehvior of f( x) t x deped o β, i.e.,

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 31, 1 (1,1) 1 f() ( 1) [, ( z,, )], 1, 1 d lim f( x). By logrithmic differetitio of (4.1), we get x xz 1(,, 1) 1 z f '( x) 1 x f( x) 2 x 1 x (1 x) xz. (4.2) (,, ) 1 x Specil Ce (i) If we utitute β = 1 i (4.1), we get ew proility ditriutio xz ( 1) (1 x) (,, ) f( x) 1 x, (,, z) (1,1), x ( 1,, 1,...; R, whe z 1 d, whe z 1), where (z,, ) i give y (1.8). (ii) If we te γ = α i (4.1), we get other ew proility deity fuctio 1 xz ( ) x (1 x) (,, ) f( x) 1 x, ( ) ( ) ( z,, ) x, (,, 1,...; R, whe z 1 d, whe z 1). (iii) O tig α = i (4.1), we get et ditriutio of ecod id. Fiher F ditriutio, which i et type-2 ditriutio with x replced y mx/, β = m/2 d γ = (m + )/2 where m, re poitive iteger c lo e otied from (4.1). Grph of the proility deity fuctio ( ) f x, defied i (4.1), re repreeted i Figure 1 d 2. We te two vlue of z.1 d 1 d plot the grph for differet vlue of the hpe prmeter β d γ while fixig the other prmeter i Figure 1 d 2, repectively.

32 Kll el l..8 β= 1.7 γ=3.8 25 β=.29.6 2.4 β= 2.1 15 1 γ=2.8.2 β= 3.2 5 γ=1.3 γ=.54 2 4 6 8 1.1.2.3.4.5 Figure 1. α =.21, = 2, =.92, z =.1.8.6 β= 1.7 γ=3.8 25 2 β=.29.4 β= 2.1 15 γ=2.8.2 β= 3.2 1 5 γ=1.3 γ=.54 2 4 6 8 1.1.2.3.4.5 Figure 2. α=.21, =2, =.92, z=1 The mthemticl expecttio of y fuctio g(x) with repect to pdf f(x) i give y E g( x) f( x) g( x) f( x) g( x), (4.3) where f ( x ) i defied y (4.1).

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 33 Momet If we te gx ( ) x i (4.3), we get the th momet out the origi follow ( 1) ( ) (,, z), ;. (4.4) (1 ), ;( z,, ) Ex ( ) x f( x ) Further, if we te g(x) = x t-1, e -tx d e ωtx i (4.3) ucceively, we oti the Melli Trform, Lplce Trform d Fourier Trform (Chrcteritic fuctio) of the pdf f(x), repectively, follow where ( 1) ( ) (,, z) t1 t1 t1 t1, t 1;, (4.5) (1 ) t1, ; ( z,, ) Ex ( ) M f( x); t x f( x ) tx tx 1 ( ) t Ee ( ) L f( x); t e f( x), ; ( z,, ), (4.6) (,, z) (1 )!, ; wtx tx 1 ( ) ( t) Ee ( ) F f( x); t = e f( x), ; ( z,, ), (4.7) (,, z) (1 )! (1)., ; The Ditriutio Fuctio The ditriutio fuctio (or cumultive ditriutio fuctio) for the pdf f ( x ) i give y x x, x B, ;(,, z) F( x) f( t) dt f( t) dt (,, z), (4.8), ; where, x B, ;(,, z) i give y (2.1). The Survivor Fuctio The Survivor fuctio i expreed B, ;(,, z) S(x) 1-F(x) f( t) dt, (4.9) (,, z) x, ;

34 Kll el l. where B, ;(,, z) i give y (2.2). The Hzrd Rte Fuctio The Hzrd rte fuctio (or filure rte) i defied equtio (4.1) d (4.9), f ( x) hx ( ) d it c e expreed uig Sx ( ) 1 xz x (1 x) (,, ) ( ) hx ( ) 1 x. (4.1) ( ) ( ) B ( z,, ), ; The Me Reidue Life Fuctio For rdom vrile the me reidue life fuctio i defied y 1 K( x) EX x X x ( tx) f( t) dt Sx ( ), x which c e writte i the followig form with the help of equtio (2.2) d (4.9) B (,, z ) K( x) ( 1) ( z,, ), 1; B, ; x. (4.11) 5. The Geerlized Hurwitz-Lerch Zet Gmm Ditriutio A lot of wor i doe y vriou reerch worer i the tudy of gmm type ditriutio ivolvig certi pecil fuctio otly Stcy (1962), Sxe d Dh (1979), Kll et l. (21), Ali et l. (21). I the preet pper we defie d tudy ew proility deity fuctio which geerlize oth the well ow gmm ditriutio d Pl ditriutio give i Joho d Kotz (197()). We coider the followig defiitio of the geerlized Hurwitz-Lerch Zet gmm ditriutio.

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 35 1 x x x e 2F1(, ; ; ze ), x f( x) (), ;(,, z ), elewhere. (5.1) where, ;(,, z) i defied y (1.4) d the followig dditiol coditio re tified (i) >, > ; γ,-1,-2,, > d z <1 or z =1 with γ-α-β >. (ii) The prmeter ivolved i (5.1) re o retricted tht f(x) remi o-egtive for x >. Here, d repreet cle prmeter while i hpe prmeter. It i ey to verify tht f( x) 1 We oerve tht ehvior of f(x) t x= deped o, i.e.,, 1 2F1(, ; ; z) f() =, 1, ;(,1, z ), 1 d lim f( x). By Logrithmic differetitio of (5.1), we get x x x 1 ze 2F1( 1, 1; 1; ze ) f '( x) f( x) x. (5.2) x 2F1(, ; ; ze ) (i) If we te β = 1 i (5.1), the we get ew proility ditriutio follow f x x e F ze z 1 x x ( ) 2 1(,1; ; ), (1,1) (),,, (,, d z 1or z 1 with 1), where ( 1,1), x (z,,) i give y (1.8). (ii) If we et = d α = i (5.1), the it reduce ito well ow gmm ditriutio.

36 Kll el l. (iii) If we te i (5.1), the we get the uified Pl ditriutio, defied y Goyl d Prjpt. (iv) O further ettig α = 1, we get the geerlized Pl ditriutio, defied y Ndrjh d Kotz (26), which i geerliztio of the well ow defied i the oo y Joho d Kotz (197(), p.273) The proility deity fuctio f ( x ) i repreeted i Figure 3 d 4. The effect of the hpe prmeter for z =.1 d z =1 i how i Figure 3. The ce, where cle prmeter d re equl for two differet vlue of z while fixig other prmeter, i how i Figure 4. 3 2.5 2 1.5 1 =.6 =1 z=.1.3.2.1 =3 =5 =7 z=1.5 =1.6.5 1 1.5 2 2.5 3 2 4 6 8 Figure 3. =.75, β =.33, γ = 3.2, =1.4, =.5.5.4 =.25= z=.1 1.8 =.5= z=1.3 =.74=.6 =.74=.2.4 =.99=.1 =1.2=.2 5 1 15 2 1 2 3 4 5 6 7 Figure 4. α=.75, β=.33, γ=3.2,=1.6

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 37 Now, we will oti momet, the ditriutio fuctio, the urvivor fuctio S(x), the hzrd rte fuctio h(x) d the me reidue life fuctio K(x) for the pdf defied y (5.1) o the lie imilr to Sectio 4. Momet, ;(, z, ) () Ex ( ) ( ) x f x, (5.3), ;(,, z ) Further, we oti the Melli Trform, Lplce Trform d Fourier Trform (Chrcteritic fuctio) of the pdf f ( x ) follow, ;(, z t 1, ) t 1 t 1 () t1 Ex ( ) Mf( x); t x f( x ), (5.4) t1, ;(,, z ) t, ;(,, z ) tx tx Ee ( ) Lf( x); t e f( x ), (5.5), ;(,, z ) t, ;(,, z ) wtx tx Ee ( ) Ff( x); t e f( x ), (1). (5.6), ;(,, z ) The Ditriutio Fuctio F( x), x, ;, ; (,, z,) (,, z ), (5.7), x where, ;(,, z,) i the icomplete geerlized gmm fuctio give y (2.4).

38 Kll el l. The Survivor Fuctio S(x), ;, ; (,, z,), (5.8) (,, z ), ; where (z,,, ) i the complemetry icomplete geerlized gmm fuctio give y (2.5). The Hzrd Rte Fuctio hx ( ) x e F(, ; ; ze ). (5.9) 1 x x 2 1 (), ;(,, z, ) The Me Reidue Life Fuctio K( x), ;, ; (, z1,,) (,, z,) x. (5.1) REFERENCES Ali, I., Kll, S.L. d Khjh, H.G. (21). A geerlized ivere Gui ditriutio with τ- cofluet hypergeometric fuctio. It. Tr. d Spec. Fuct., Vol. 12, No.2, pp. 11-114. Be-Nhi, Y. d Kll, S. L. (22). A geerlized et fuctio d ocited proility deity. IJMMS Vol. 3, No. 8, pp. 467-478. Be-Nhi, Y. d Kll, S. L. (23). A geerliztio of et-type ditriutio with ω-appell fuctio. It. Tr. d Spec.Fuct., Vol. 14, No. 4, pp. 321-332. Erdélyi, A., Mgu, W., Oerhitteger, F d Tricomi, F. G. (1953). Higher Trcedetl Fuctio, Vol. 1. McGrw-Hill, New Yor, Toroto d Lodo. Grg. M. d Gupt, M. K. (1997). Applictio of covolutio for ditriutio of um of two idepedet rdom vrile. Git Sdeh, Vol.11, No.1, pp. 37-44. Goyl, S.P. d Lddh, R.K. (1997). O the geerlized Riem Zet fuctio d the geerlized Lmert trform. Git Sdeh Vol. 11, No. 2, pp. 99-18. Goyl, S.P. d Prjpt, J.K. O uified Pl ditriutio, Itertiol J. Mth. Sci. (To pper). Joho, N.L. d Kotz, S. (197()). Ditriutio i Sttitic: Cotiuou Uivrite Ditriutio. Vol. 1, Joh Wiley & So, New Yor. Joho, N.L. d Kotz, S. (197()). Ditriutio i Sttitic: Cotiuou Uivrite Ditriutio, Vol. 2. Joh Wiley & So, New Yor.

AAM: Iter. J., Vol. 4, Iue 1 (Jue 29) [Previouly, Vol. 4, No. 1] 39 Kll, S.L., Al-Sqi, B.N. d Khjh, H.G. (21). A uified form of gmm-type ditriutio. Appl. Mth. Comput., Vol. 118, No. 2-3, pp. 175-187. Leedev, N.N. (1965). Specil Fuctio d their pplictio. Pretice-Hll, New Jerey. Li, S.D. d Srivtv, H.M. (24). Some fmilie of the Hurwitz-Lerch Zet fuctio d ocited frctiol derivtive d other itegrl repreettio. Appl. Mth. Comput. Vol. 154, pp. 723-733. Mli, H.J. (1967). Exct ditriutio of the quotiet of idepedet geerlized gmm vrile. Cd. Mth. Bull., Vol. 1, pp. 463-465. Mthi, A.M. (1993). A Hdoo of Geerlized Specil Fuctio for Sttiticl d Phyicl Sciece, Clredo Pre, Oxford. Mthi, A.M. d Sxe, R.K. (1971). A geerlized proility ditriutio. Uiv. Nt. Tucum Rev. Ser. (A),Vol. 21, pp. 193-22. Mthi, A.M. d Sxe, R.K. (1973). Geerlized Hypergeometric Fuctio with Applictio i Sttitic d Phyicl Sciece, Spriger-Verlg, NewYor. Mthi, A.M. d Sxe, R.K. (1978). The H-fuctio with Applictio i Sttitic d Other Diciplie, Willey Eter Ltd, New Delhi. Ndrjh, S. d Kotz, S. (26). A geerlized Pl ditriutio. Socieded de Etdítice Ivetigcío opertive (Tet), Vol. 15, No. 2, pp. 361-374. Riville, E.D. (196), Specil Fuctio, McMill Compy, New Yor. Sxe, R.K. d Dh, S.P. (1979). The ditriutio of the lier comitio d of the rtio of product of idepedet rdom vrile ocited with H-fuctio. Vij Prihd Audh Ptri, Vol. 22, No.1, pp. 57-65. Stcy, E.W. (1962). A geerliztio of the gmm ditriutio. A. Mth. Stt. Vol. 33, pp. 1187-1192.