Modelling Multivariate Peaks-over-Thresholds using Generalized Pareto Distributions

Similar documents
Extreme value statistics: from one dimension to many. Lecture 1: one dimension Lecture 2: many dimensions

The extremal elliptical model: Theoretical properties and statistical inference

Peaks over thresholds modelling with multivariate generalized Pareto distributions

Multivariate Pareto distributions: properties and examples

Multivariate peaks over thresholds models

Estimation of spatial max-stable models using threshold exceedances

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

Modelling extreme-value dependence in high dimensions using threshold exceedances

PREPRINT 2005:38. Multivariate Generalized Pareto Distributions HOLGER ROOTZÉN NADER TAJVIDI

Statistics of Extremes

ESTIMATING BIVARIATE TAIL

Multivariate generalized Pareto distributions

A Conditional Approach to Modeling Multivariate Extremes

On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions

Models and estimation.

Assessing Dependence in Extreme Values

Abstract: In this short note, I comment on the research of Pisarenko et al. (2014) regarding the

Bivariate generalized Pareto distribution

Extreme Value Analysis and Spatial Extremes

Extreme Value Theory and Applications

Multivariate generalized Pareto distributions

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Bayesian inference for multivariate extreme value distributions

Bayesian Modelling of Extreme Rainfall Data

arxiv: v2 [stat.me] 25 Sep 2012

Variable inspection plans for continuous populations with unknown short tail distributions

MAS223 Statistical Inference and Modelling Exercises

Nonlinear Time Series Modeling

arxiv: v4 [math.pr] 7 Feb 2012

The Generalized Pareto process; with application

Nonparametric Estimation of the Dependence Function for a Multivariate Extreme Value Distribution

Math 576: Quantitative Risk Management

Bayesian nonparametrics for multivariate extremes including censored data. EVT 2013, Vimeiro. Anne Sabourin. September 10, 2013

Sharp statistical tools Statistics for extremes

Bridging Asymptotic Independence and Dependence in Spatial Extremes Using Gaussian Scale Mixtures

A Bayesian Spatial Model for Exceedances Over a Threshold

Bayesian Model Averaging for Multivariate Extreme Values

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES

Chapter 5 continued. Chapter 5 sections

Bivariate generalized Pareto distribution in practice: models and estimation

Change Point Analysis of Extreme Values

Simulation of Max Stable Processes

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016

Financial Econometrics and Volatility Models Extreme Value Theory

Brief Review of Probability

Estimation of the extreme value index and high quantiles under random censoring

Modeling Extremal Events Is Not Easy: Why the Extreme Value Theorem Cannot Be As General As the Central Limit Theorem

arxiv: v2 [math.pr] 28 Jul 2011

HIERARCHICAL MODELS IN EXTREME VALUE THEORY

MULTIVARIATE EXTREMES AND RISK

Max-stable Processes for Threshold Exceedances in Spatial Extremes

STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS. Rick Katz

Bias-corrected goodness-of-fit tests for Pareto-type behavior

Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets

Some conditional extremes of a Markov chain

01 Probability Theory and Statistics Review

APPROXIMATING THE GENERALIZED BURR-GAMMA WITH A GENERALIZED PARETO-TYPE OF DISTRIBUTION A. VERSTER AND D.J. DE WAAL ABSTRACT

NONPARAMETRIC ESTIMATION OF THE CONDITIONAL TAIL INDEX

arxiv: v1 [math.pr] 24 Aug 2018

On the Estimation and Application of Max-Stable Processes

Sampling Distributions

An M-estimator of Spatial Tail Dependence Einmahl, John; Kiriliouk, A.; Krajina, A.; Segers, J.J.J.

Physically-Based Statistical Models of Extremes arising from Extratropical Cyclones

Generalized Logistic Distribution in Extreme Value Modeling

A PRACTICAL WAY FOR ESTIMATING TAIL DEPENDENCE FUNCTIONS

Generalized additive modelling of hydrological sample extremes

Analysing geoadditive regression data: a mixed model approach

On heavy tailed time series and functional limit theorems Bojan Basrak, University of Zagreb

Practical conditions on Markov chains for weak convergence of tail empirical processes

Lecture 2: Repetition of probability theory and statistics

A Closer Look at the Hill Estimator: Edgeworth Expansions and Confidence Intervals

Investigation of an Automated Approach to Threshold Selection for Generalized Pareto

Analysis methods of heavy-tailed data

Bayesian Inference for Clustered Extremes

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Two practical tools for rainfall weather generators

Discussion on Human life is unlimited but short by Holger Rootzén and Dmitrii Zholud

Multivariate Non-Normally Distributed Random Variables

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes

Random Variables and Their Distributions

Approximating the Conditional Density Given Large Observed Values via a Multivariate Extremes Framework, with Application to Environmental Data

Modelação de valores extremos e sua importância na

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization

Statistics of Extremes

Skew Generalized Extreme Value Distribution: Probability Weighted Moments Estimation and Application to Block Maxima Procedure

Chapter 3 : Likelihood function and inference

Probability and Distributions

Chapter 5. Chapter 5 sections

EVA Tutorial #2 PEAKS OVER THRESHOLD APPROACH. Rick Katz

A Few Special Distributions and Their Properties

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song

Introduction to Machine Learning

A space-time skew-t model for threshold exceedances

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012

The Convergence Rate for the Normal Approximation of Extreme Sums

BIAS CORRECTION IN MULTIVARIATE EXTREMES. By Anne-Laure Fougères Laurens de Haan and Cécile Mercadier Université Lyon 1 and Erasmus University

Transcription:

Modelling Multivariate Peaks-over-Thresholds using Generalized Pareto Distributions Anna Kiriliouk 1 Holger Rootzén 2 Johan Segers 1 Jennifer L. Wadsworth 3 1 Université catholique de Louvain (BE) 2 Chalmers University of Technology (S) 3 Lancaster University (UK) Risk, Extremes and Contagion Université de Nanterre, May 25 26, 2016 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 1 / 37

Multivariate Peaks-over-Thresholds ξ exceeds a multivariate threshold u: ξ u j = 1,..., d : ξ j > u j ξ 2 u 2 Distribution of excess ξ u given ξ u? ξ 1 u 1 Other exceedances (Thibaud and Opitz, 2013; Dombry and Ribatet, 2015): j = 1,..., d : ξ j > u j ξ 1 + + ξ d > u 1 + + u d... Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 2 / 37

Multivariate Generalized Pareto Distributions Maxima and exceedances Parametrization Representations and densities Stability Inference Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 3 / 37

Generalized Extreme-Value distributions Random vector ξ in R d, cdf F ξ (x) = P(ξ x). Assumption: Max-domain of attraction There exist scaling a n > 0 and location b n R d sequences such that F n ξ (a nx + b n ) G(x), n F n is cdf of vector of componentwise maxima of iid sample from F. Limit G is necessarily Generalized Extreme-Value = Max-Stable Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 4 / 37

Multivariate Generalized Pareto distribution If F n ξ (a nx + b n ) G(x) as n, then, provided 0 < G(0) < 1 (w.l.o.g.), L ( an 1 ) d (ξ b n ) η ξ b n Multivariate Generalized Pareto H where η j [, ) is the lower endpoint of G j. Cumulative distribution function H = GP(G): for x such that G(x) > 0, H(x) = log G(x 0) ( log G(x)) log G(0) Beirlant et al. (2004) Rootzén and Tajvidi (2006) Falk et al. (2010) Ferreira and de Haan (2014) Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 5 / 37

Independent maxima: single-component exceedances Generalized Extreme-Value G: ( G(x 1, x 2 ) = exp 1 x 1 + 1 1 ) x 2 + 1 x 1 > 1, x 2 > 1 Generalized Pareto H: law of { ( 1, Y) wp 1/2, (X 1, X 2 ) = (Y, 1) wp 1/2 X 2 0 1 1 with P(Y t) = 1 1 1+y for y 0 (univariate Generalized Pareto). X 1 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 6 / 37

Completely dependent maxima and exceedances Generalized Extreme-Value G: ( ) 1 G(x 1, x 2 ) = exp min(x 1, x 2 ) + 1 x 1 > 1, x 2 > 1 Generalized Pareto H: law of (Y, Y) X 2 0 1 1 with P(Y y) = 1 1 1+y for y 0 (univariate Generalized Pareto). X 1 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 7 / 37

1 Example: logistic Generalized Extreme-Value G(x 1, x 2 ): exp[ { 2 j=1 (1 + x j) 1/θ } θ ] x 1 > 1, x 2 > 1 Generalized Pareto H: pdf h(x 1, x 2 ): 2 θ 2 x 1 x 2 { 2 j=1 (1+x j) 1/θ } θ Support: x 1 > 1 x 2 > 1 x 1 x 2 > 0 1.0 0.5 0.0 0.5 1.0 0.3 0.6 0.8 0.5 0.7 0.1 0.2 0.4 θ = 0.4 0.7 0.9 1.0 0.5 0.0 0.5 1.0 0.8 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 8 / 37

Multivariate Generalized Pareto Distributions Maxima and exceedances Parametrization Representations and densities Stability Inference Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 9 / 37

Generalized Extreme-Value distributions Margins: shape γ j R, location µ j R, scale α j (0, ) exp[ {1 + γ j (x j µ j )/α j } 1/γ j ] if γ j 0, G j (x j ) = exp[ exp{ (x j µ j )/α j }] if γ j = 0 Stable tail dependence function (stdf) l : [0, ) d [0, ) G(x) = exp[ l{ log G 1 (x 1 ),..., log G d (x d )}] Notation: G = GEV(γ, µ, α, l) Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 10 / 37

Identifiability issue Max-stability: G = GEV(γ, µ, α, l) = G t = GEV(γ, µ(t), α(t), l), 0 < t < with µ(t) =... and α(t) =... (exercise). However: GP(G t ) = GP(G). Therefore: not all GEV parameters are identifiable from H = GP(G). Solution? Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 11 / 37

Cumulative distribution function Let G = GEV(γ, µ, α, l). Suppose σ = α γµ (0, ) Then 0 < G(0) < 1. Let H = GP(G). For x R such that σ + γx > 0, ( H(x) = l π (1 + γ(x 0)/σ) 1/γ) l (π (1 + γx/σ) 1/γ) where, in case also x 0, H j (0) = π j H j (x j ) H j (0) = (1 + γ jx j /σ j ) 1/γ j H(x) = l ( H 1 (x 1 ),..., H d (x d ) ) Parametrization: H = GP(γ, σ, π, l). Constraint: l(π) = 1. Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 12 / 37

Multivariate Generalized Pareto Distributions Maxima and exceedances Parametrization Representations and densities Stability Inference Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 13 / 37

Standardization We have X GP(γ, σ, π, l) if and only if we have and Z GP(0, 1, π, l). X = σ eγz 1 γ The support of Z is contained in [, ) \ [, 0] and P[Z z] = l ( πe (z 0)) l ( πe z) How to construct Z? Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 14 / 37

Spectral representation A random vector S in [, 0] d is a spectral random vector if: P[max(S 1,..., S d ) = 0] = 1 P[S j > ] > 0, j = 1,..., d Let E be a unit exponential random variable independent of S. Then where Z := S + E GP(0, 1, π, l) π j = E[e S j ] [ l(y) = E max j=1,...,d { e S }] j y j π j H(z) = 1 E[1 e max(s z) ] Conversely: given π and l with l(π) = 1, there exists a unique (in law) spectral random vector S such that the above holds. Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 15 / 37

Constructing spectral random vectors (1) Let T be a random vector in [, ) d such that Then 0 < E[e T j ] <, j = 1,..., d P[max(T 1,..., T d ) > ] = 1 S = T max(t) is a spectral random vector. The associated GP(0, 1, π, l) = GP S (0, 1, L(S)) distribution is determined by π j = E[e Tj max(t) ] [ { l(y) = E max j=1,...,d y j }] e T j max(t) E[e Tj max(t) ] H(z) = 1 E[1 e max(t z) max(t) ] Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 16 / 37

Density (1) Suppose T has support included in R d and is absolutely continuous with Lebesgue density f T. Then the GP T (0, 1, L(T)) distribution has Lebesgue density h given by h(z) = 1(z 0) 1 e max(z) 0 f T (z + log t) t 1 dt. Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 17 / 37

Example: max-normalized log-gaussian generators (1) Pdf of H = GP T (0, 1, N d (0, Σ)): h(z) = (2π)(1 d)/2 Σ 1/2 (1 T Σ 1 1) 1/2 e max(z) exp { 12 (Σ zt 1 Σ 1 11 T Σ 1 ) } 1 T z Σ 1 1 z R d \ (, 0] d Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 18 / 37

Example: max-normalized log-gaussian generators (2) pdf of (Z 1, Z 2 ) GP T with γ 1 = γ 2 = 0 σ 1 = σ 2 = 0 (T 1, T 2 ) N 2 (0, ( )) 1 ρ ρ 1 6 4 2 0 2 4 6 8 6 4 2 0 2 4 6 8 ρ =.5 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 19 / 37

Example: max-normalized log-gaussian generators (2) pdf of (Z 1, Z 2 ) GP T with γ 1 = γ 2 = 0 σ 1 = σ 2 = 0 (T 1, T 2 ) N 2 (0, ( )) 1 ρ ρ 1 6 4 2 0 2 4 6 8 6 4 2 0 2 4 6 8 ρ = 0 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 19 / 37

Example: max-normalized log-gaussian generators (2) pdf of (Z 1, Z 2 ) GP T with γ 1 = γ 2 = 0 σ 1 = σ 2 = 0 (T 1, T 2 ) N 2 (0, ( )) 1 ρ ρ 1 6 4 2 0 2 4 6 8 6 4 2 0 2 4 6 8 ρ =.5 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 19 / 37

Constructing spectral random vectors (2) Let U be a random vector in [, ) d such that 0 < E[e U j ] < for all j. Let S be the spectral random vector defined in distribution by P[S ] = E [ 1{U max(u) } e max(u)] E[e max(u) ] The associated GP(0, 1, π, l) = GP S (0, 1, L(S)) distribution is given by π j = E[eU j ] E[e max(u) ] [ l(y) = E max j=1,...,d { y j e U }] j E[e U j] H(z) = 1 E[emax(U) e max(u z) ] E[e max(u) ] Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 20 / 37

Density (2) Suppose U has support included in R d and is absolutely continuous with Lebesgue density f T. Then the GP U (0, 1, L(U)) distribution has Lebesgue density h given by h(z) = 1(z 0) 1 E[e max(u) ] 0 f U (z + log t) dt. Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 21 / 37

Example: independent Fréchet generators e U j independent Fréchet shape α > 0 scales λ j > 0 GP U (0, 1, L(U)) density: h(z) e α d j=1 z j ( d j=1 ( ez j λ j ) α ) d 1/α z R d \ (, 0] d explicit proportionality constant 7 5 3 1 1 3 5 7 7 5 3 1 1 3 5 7 margins dependence γ 1 = γ 2 = 0 α = 2 σ 1 = σ 2 = 1 λ 1 = 2, λ 2 = 1 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 22 / 37

Example: independent Beta generators e U j independent Beta shapes (α j, 1) scales λ j GP U (0, 1, L(U)) density: h(z) z R d \ (, 0] d d j=1 ez j/α j max(λe z ) d j=1 1/α j+1 7 5 3 1 1 3 5 7 9 11 13 15 15 11 7 5 3 1 1 3 5 7 explicit proportionality constant margins dependence γ 1 = γ 2 = 0 α 1 = 2, α 2 = 3 σ 1 = σ 2 = 1 λ 1 = 2, λ 2 = 1 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 23 / 37

Point process representation iid U, U 1, U 2,... in [, ) d such that 0 < E[e U j ] < for all j unit-rate Poisson process 0 < R 1 < R 2 <... (U i ) i and (R i ) i are independent Point process consisting of points ξ i (i = 1, 2,...) where ξ i = U i log R i The law, G, of max i ξ i is GEV (de Haan, 1984): log G(z) = E[e max(u z) ] Associated GP: H = GP(G) = GP U (0, 1, L(U)) Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 24 / 37

Multivariate Generalized Pareto Distributions Maxima and exceedances Parametrization Representations and densities Stability Inference Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 25 / 37

Lower-dimensional margins Let X be GP and let J {1,..., d}. The law of X J = (X j ) j J is not GP. The law of X J given that max j J X j > 0 is GP: X GP(γ, σ, π, l) = L(X J X J 0) = GP (γ J, σ J, (P[X j > u j X J 0]) j J, l J ) X GP U (γ, σ, U) = L(X J X J 0) = GP U (γ J, σ J, L(U J )) If J = {j}, we find that L(X j X j > 0) = GP(γ j, σ j ). Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 26 / 37

Threshold stability Univariate GP distributions are threshold stable. What if multivariate? Let X GP(γ, σ, π, l). Let u [0, ) d be such that P(X j > u j ) > 0 for all j. Then L(X u X u) = GP (γ, σ + γu, (P[X j > u j X u]) j, l) Change of marginal parameters as in univariate case Change from π j = P[X j > 0] to P[X j > u j X u] Same stdf l Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 27 / 37

Linear combinations Let X GP S (γ, σ, π, l) be such that γ 1 =... = γ d =: γ. Let a [0, ) d and write a X = d j=1 a jx j. If P[a X > 0] > 0, then L(a X a X > 0) = GP(γ, a σ). Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 28 / 37

Linear transformations Let X GP S (γ, σ, L(S)) be such that γ 1 =... = γ d =: γ. Let A = (a i,j ) i,j [0, ) m d be such that P[A ix > 0] > 0 for all i. For x R m such that A iσ + γx i > 0 for all i = 1,..., m, [ ] P[AX x] = E 1 max {(1 + γx i/a iσ) 1/γ e U i } i=1,...,m where U = (U 1,..., U m ) is given by γ 1 log ( d j=1 U i = p i,j e γs ) j if γ 0, d j=1 p i,j S j if γ = 0, where p i,j = a i,j σ j /A iσ j. As a consequence, L(AX AX 0) = GP U (γ, Aσ, L(U)). Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 29 / 37

Multivariate Generalized Pareto Distributions Maxima and exceedances Parametrization Representations and densities Stability Inference Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 30 / 37

Inference problem Data ξ 1,..., ξ n. Threshold u. Threshold exceedances: {ξ i ξ i u}. Model: L(ξ ξ u) = u + σ eγz 1 γ GP(0, 1, π, l) Z GP T (0, 1, L(T)) GP U (0, 1, L(U)) Parametric model for l or L(T) or L(U), parameter α = Parametric model for f Z = Likelihood inference on θ = (γ, σ, α)? Nonparametric inference: empirical stdf ˆl n? Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 31 / 37

Data points with some components far beneath the threshold Exceedance x u (on original scale): excess x u 0. Model by Generalized Pareto? Ill-justified if x j u j for some j. Censor components that are too low. X 1 X 2 u 1 u 2 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 32 / 37

Censored likelihood 1. Choose second, lower threshold v < u. 2. If x j v j, replace x j by v j : censoring from below. 3. Likelihood contribution of a point x u but x v: h(w C u C, x D u D ) dw C (,v C ] C = {j = 1,..., d : x j v j } censored variables; D = {j = 1,..., d : x j > v j } uncensored variables. Comparative study of likelihood-based estimators: Huser et al. (2014). Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 33 / 37

Censored likelihood: Proof of concept X GP U (γ, σ, log Beta) 2.5 2.0 1.5 1.0 0.5 0.0 0.5 α 1 α 2 α 3 λ 1 λ 2 σ 1 σ 2 γ 1 γ 2 Boxplots of normalized parameter estimates, 30 repetitions Censoring at v = u = 0 Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 34 / 37

Overall summary Modelling excess X = ξ u conditionally on ξ u: = Multivariate Generalized Pareto distribution H Q How does H look like? A X = σ eγz 1 γ with Z GP(0, 1, π, l) Q How to construct parametric models for it? A via spectral representations Q How to fit such models? A Censored likelihood Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 35 / 37

Outlook Computational challenges Likelihood: proportionality constant E[e max(u) ]? Simulation: change-of-measure f U (u) e max(u) f U (u)? Likelihood optimisation in case many parameters?... Statistical challenges Graceful blending with models for the bulk of the distribution? Covariates? Threshold choice? Model construction: parsimony vs flexibility?... Thank you! Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 36 / 37

Bibliography Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels (2004). Statistics of Extremes: Theory and Applications. John Wiley & Sons. de Haan, L. (1984). A spectral representation for max-stable processes. The Annals of Probability 12(4), 1194 1204. Dombry, C. and M. Ribatet (2015). Functional regular variations, pareto processes and peaks over threshold. Statistics and Its Interface 8, 9 17. Falk, M., J. Hüsler, and R.-D. Reiss (2010). Laws of small numbers: extremes and rare events. Springer Science & Business Media. Ferreira, A. and L. de Haan (2014). The generalized Pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717 1737. Huser, R., A. C. Davison, and M. G. Genton (2014). A comparative study of likelihood estimators for multivariate extremes. Extremes (arxiv:1411.3448). Rootzén, H. and N. Tajvidi (2006). Multivariate generalized Pareto distributions. Bernoulli 12(5), 917 930. Thibaud, E. and T. Opitz (2013). Efficient inference and simulation for elliptical Pareto processes. arxiv preprint arxiv:1401.0168. Kiriliouk/Rootzén/Segers/Wadsworth Multivariate Generalized Pareto Distributions Nanterre, 26 May 2016 37 / 37