MEEN 617 Handout #12 The FEM in Vibrations A brief introduction to the finite element method for modeling of mechanical structures

Similar documents
AS 5850 Finite Element Analysis

Nonlinear Bending of Strait Beams

Finite element discretization of Laplace and Poisson equations

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

3-2-1 ANN Architecture

Direct Approach for Discrete Systems One-Dimensional Elements

Elements of Statistical Thermodynamics

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Physics 43 HW #9 Chapter 40 Key

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

VSMN30 FINITA ELEMENTMETODEN - DUGGA

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Introduction to Condensed Matter Physics

1 Isoparametric Concept

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

10. The Discrete-Time Fourier Transform (DTFT)

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

2008 AP Calculus BC Multiple Choice Exam

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

NONLINEAR ANALYSIS OF PLATE BENDING

The Matrix Exponential

Hydrogen Atom and One Electron Ions

Trigonometric functions

Why is a E&M nature of light not sufficient to explain experiments?

That is, we start with a general matrix: And end with a simpler matrix:

Exponential Functions

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

The Matrix Exponential

AP Calculus BC AP Exam Problems Chapters 1 3

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

MA 262, Spring 2018, Final exam Version 01 (Green)

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

16. Electromagnetics and vector elements (draft, under construction)

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

DIFFERENTIAL EQUATION

Strength of Materials

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

4.2 Design of Sections for Flexure

3 Finite Element Parametric Geometry

2.3 Matrix Formulation

Massachusetts Institute of Technology Department of Mechanical Engineering

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Where k is either given or determined from the data and c is an arbitrary constant.

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real.

Instantaneous Cutting Force Model in High-Speed Milling Process with Gyroscopic Effect

The Finite Element Method

Coupled Pendulums. Two normal modes.

[1] (20 points) Find the general solutions of y y 2y = sin(t) + e t. Solution: y(t) = y c (t) + y p (t). Complementary Solutions: y

Higher order derivatives

Supplementary Materials

1973 AP Calculus AB: Section I

Math 34A. Final Review

Addition of angular momentum

Differential Equations

Section 11.6: Directional Derivatives and the Gradient Vector

Quasi-Classical States of the Simple Harmonic Oscillator

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

AP Calculus Multiple-Choice Question Collection

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Selective Mass Scaling (SMS)

2. Background Material

Continuous probability distributions

Problem Statement. Definitions, Equations and Helpful Hints BEAUTIFUL HOMEWORK 6 ENGR 323 PROBLEM 3-79 WOOLSEY

1 General boundary conditions in diffusion

Search sequence databases 3 10/25/2016

Addition of angular momentum

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Title: Vibrational structure of electronic transition

Thermodynamical insight on the role of additives in shifting the equilibrium between white and grey tin

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18

The pn junction: 2 Current vs Voltage (IV) characteristics

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Classical Magnetic Dipole

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

2. Laser physics - basics

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

u 3 = u 3 (x 1, x 2, x 3 )

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Week 3: Connected Subgraphs

Transcription:

MEEN 67 Handout # T FEM in Vibrations A brif introduction to t finit lmnt mtod for modling of mcanical structurs T finit lmnt mtod (FEM) is a picwis application of a variational mtod. Hr I provid you wit a fundamntal introduction to t FE mtod congrunt wit prior analysis of mcanical systms and t assumd mods mtod. For a complt and most lucid introduction to t FEM plas rad Rddy, J.N., Introduction to t Finit Elmnt Mtod, Jon Wily Pubs. T bauty of t FEM mtod lis on its simplicity sinc its formulation is indpndnt of t actual rspons of t systm. Tat is, littl knowldg about an pctd answr is rquird a-priori. Lt s rviw t Assumd Mods Mtod. In any mcanical systm, t Hamiltonian t T V Wt dt () t is t fundamntal principl of mcanics from wic t laws of motion ar drivd, i.., Nwton s Laws and/or Lagrangian Mcanics. In gnral, t kintic nrgy (T) and t strain nrgy (V) of a mcanical systm ar functions of t displacmnt vctor ( ) and its tim drivativs, i.., MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

T T v, v,matrialproprtis () V V v, v,matrialproprtis wr ( ) = d/dt andv= vi + vy j + vzk of a matrial point in t domain of intrst Ω= Ω( i ) is t vctor of displacmnts X3 Domain (Xi) v X X Fig. Domain for analysis In t assumd mods mtod an approimation to t displacmnt function in a continuous systm is prssd as n i v j i i (3) ( t ) wr ac ψ i(ω) dscribs a dflctd sap ovr t ntir domain. Eq. (3) is a linar combination of t basis functions st {ψ i(ω) } As sown in past lcturs, substitution of Eq. (3) into Eq. () lads to an N-DOF matmatical modl of t mcanical systm, wos quations of motion ar: MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

Mv+Kv=Q (4) wr M = M T and K = K T ar t N N matrics of mass and stiffnss cofficints, rspctivly, and Q is t vctor of gnralizd forcs. T cofficints in M and K ar dtrmind from rlations of t sap functions and its drivativs. For ampl: For an lastic bar subjctd to aial motions: M M A d, ij ji i j L L d d d d i j Kij K ji EA d u,a (5.a) wil, for an lastic bam undr transvrs or latral dformations, M M A d, ij ji i j L L d d i j Kij K ji EI d d d v,e,i (5.b) Abov, t st of sap functions i i =,,.. must satisfy b an N admissibl st (wic mans): * i must b a linarly indpndnt st, * satisfy t ssntial boundary conditions, * b sufficintly diffrntiabl as rquird by t strain nrgy function. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 3

Howvr, tr ar a numbr of problms associatd wit ts rquirmnts: a) a compl systm gomtry rquirs of compl sap functions, i.., a difficult task for t inprincd usr; b) i ar dfind ovr t ntir domain () and tus, ty lad to a igly coupld systm of quations; ar rlatd to a particular problm; and consquntly, not gnral. c) i T FEM ovrcoms ts difficultis and provids a sound basis for t analysis of vibrations of mcanical systms. T FEM can b nvisiond in t prsnt contt as an application of t assumd mods mtod wrin t sap functions rprsnt dflction ovr just a portion (finit lmnt) of t i structur, wit t lmnts bing assmbld to form t structural systm. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 4

A FE modl for aial dformations of an lastic bar Figur sows an lastic bar (on fid nd) subjctd to aial loads (P, f) (t) tat caus aial displacmnts or lastic dformations u (,t).,a u(,t) f L P=AE du/d Fig. Elastic bar undr aial displacmnts T first stp in t FEM is to divid t domain Ω into a sris of finit lmnts {Ω } and tn constructing a finit lmnt ms, as sown in Fig. 3. lmnt lngt N - + + N N+ N nod or joint Fig 3. Discrtization of bar into N finit lmnts MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 5

Drivation of EOM for on finit lmnt A typical lmnt Ω = ( A, B ) is isolatd from t ms. =B-A A =-A Figur 4 dpicts a fr body diagram of t lmnt, wr u and u ar t (nodal) aial displacmnts at t tips of t lmnt, and P and P ar t (nod) aial forcs arising from t ractions wit t nigboring lmnts. Not f rprsnts a distributd forc/unit lngt acting on t bar. P u f Distributd forc/lngt u,a P u P EA u P EA ; Fig 4. Fr body diagram for a finit lmnt in aial bar T nodal aial forcs P ar u u P EA ; P EA MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 6

T kintic nrgy (T ) and potntial (strain) nrgy (V ) for t finit lmnt Ω ar: u T A d, t u V EA d and t virtual work from t trnal forcs ovr t lmnt is t (6) ( A) ( B) (7) W f u d u P u P T Hamiltonian Principl applis ovr t wol systm; and nc, it also olds ovr t lmnt (Ω ); tus t T V W dt t (8) t In Ω = ( A, B ), lt t displacmnt u b rprsntd as u t, i u i () t (9) i wr u u,, A t u ub, tar t nodal displacmnts and and ar sap functions admissibl to t problm. Not tat on prsums to know u, u. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 7

Substitution of Eq. (9) into Eq. (6) givs: ij i j, ij i j () T M uu V K uu i j i j wr t cofficints of t lmnt mass and lmnt stiffnss matrics ar: T sap functions in Eq. (9) satisfy: ij ji i j M M A d, d d i j K K E A d ij ji d d i ( t) i t, i At A or, u u u u, (, t ) () u u u u must ( ) ( ) At or, B, (3a) ( ) ( ) u u u u (, t) ( ) ( ), (3b) ( ) ( ) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 8

Not tat from Eq. (), t sap functions nd to b at last onc C. diffrntiabl ovr t lmnt Ω, i.., i i,.. n Not n > in Eq. (9) is also a coic. Howvr, igr ordr lmnts ar not discussd r for brvity. Work now wit t virtual work prformd by t trnal forcs. Substitution of Eq. (9) into Eq. (7) lads to: Wt f i dui u P () u P ( ) Wt Fi ui up up (4) Sinc (). AbovF ( ) i f i d is a vctor of distributd forcs, and rcall tat t nodal raction aial forcs. u u P EA ; P EA Substitution of Eqs. (, 4) into t Hamiltonian Principl in Eq. (8) lads to t systm of quations for ONE lmnt: ar or in matri form n n M ijuj Kijuj Fi Pi j j (5a) Mu +Ku=F +P (5b) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 9

From Eqs. (3) t sap functions i must satisfy t ssntial i =, boundary conditions, ;, and C, i i =, Slct, ; (6) Fig 5. Sap functions for a finit lmnt in aial bar Not tat a) ψ and ψ ar linar combinations of t linarly indpndnt complt st, t sap functions ar a,. In addition, partition of unity (Tis mans t sap functions i i =, ar abl to modl rigid body displacmnts). is diffrnt from zro only on Ω and lswr is b) t st i i =, zro. Tis quality is calld a local support and it is trmly important MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

to mak t global M and K matrics bandd, i.., wit a small numbr of non-zro valus. T drivation of t sap (or intrpolation) functions i i =, dos not dpnd on t problm. T functions do dpnd on t typ of lmnt (gomtry, numbr of nods or joints, and t numbr of primary unknowns). Substitution of t sap functions, Eq. (6), into t lmnt mass and stiffnss matrics givs: A AE f M ; ; 6 K F (7) for a bar wit uniform cross sctional ara (A ) and matrial proprtis (ρ, E) witin t lmnt. Not tat K is a singular matri. T nt stp constructs (in t computr) t matrics (M, K ) =,,..N for ac lmnt in t domain of intrst. Nt, on prforms t intrconnction or assmbly of t lmnt EOMs. For t sak of discussion, suppos t domain Ω = (, L) is dividd into 3 lmnts of possibly unqual lngts, as sown blow 3 P 3 4 3 Global nods MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

Dfin t global displacmnts U={U, U, U 3, U 4 } U U U3 U4 3 4 Global displacmnts wil t (local) nodal displacmnts in ac lmnt () ar: u u 3 3 u u u u 3 4 lmnt displacmnts 3 T lmnts ar connctd at global nods () and (3); sinc t displacmnt U nds to b continuous (i.., witout cracks, fracturs, tc.). Tn, t intrlmnt continuity conditions ar U u, 3 3 3 4 u U u u U u u U MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés,, (8) A BOOLEAN or CONNECTIVITY ARRAY (B) stats t corrspondnc btwn local nods in an lmnt and t global nods. B ij t global nod numbr corrsponding to t j-t nod of lmnt i i =,....N : numbr lmnts on ms. j =,....N n : numbr of nods pr lmnt.

Prsntly, B 3 34 Rptition of a numbr in B indicats tat t cofficints of K and M associatd wit t nod numbr will add. In a computr implmntation of t FE scm, t connctivity array is usd tnsivly for t automatic assmbly of t global systm of quations. For t tr lmnts in t ampl, t lmnt Eqns. (7) ar writtn in global coordinats or nods as: =: =: =3: U U F P U A AE U F P 6 U U A 6 A 6 3 3 U 4 U 4 U U U U F P AE U 3 U 3 F P U 4 U 4 U U U AE U 3 3 3 U 3 U3 F P 3 3 U 4 U4 F P MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 3

T global EOMS for t wol systm ar obtaind by suprposition (addition) of t quations abov: MU KUF+P F P F F P P 3 3 F F P P 3 3 F P (8) wr N ; M M K K (9) N ar t global matrics of mass and stiffnss cofficints, and N ; F f P P () N ar t vctors of distributd forcs and nodal forcs, rspctivly. Not abov K is singular sinc t boundary condition (fid nd at =, i.. U =) is yt to b applid. Imposition of boundary conditions In gnral, du to continuity (action=raction), at t intrnal nods P P, P P 3 Or P P Q, P P Q, 3 3 P Q () 3 4 wit Q, Q 3 and Q 4 as spcifid nodal (aial) forcs acting on t bar. Incidntally, U = is spcifid, wil t wall raction forc an unknown. P? is MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 4

In gnral, lt Ua U=, wr U a is a vctor containing t activ U d DOF (dgrs of frdom) and U d ar t spcifid (tim invariant) DOF. Tn, t global quations of motion ar partitiond as Maa Mad U Kaa Kad Ua S a + = a Mda Mdd Ud Kda Kdd Ud Sd () wr Mad Mda, Kda K ad. S a =F+Q is a vctor of (known) applid forcs (distributd and nodal) and S d is a vctor of unknown raction forcs (to b calculatd) Sinc U d, pand Eqs. () as M U K U K U S M U K U K U S aa a aa a ad d a da a da a dd d d Solv for U a from t first quation abov, M U K U S K U (3) aa a aa a a ad d and nt, find t intrnal forcs S d from t nd Equation S M U K U K U (4) d da a da a dd d For t lastic bar, t systm of qns. (3) is tridiagonal and tus, its solution can b obtaind quickly witout a matri invrsion. Not tat t ssntial BCs is a spcifid U = wil t raction forc P is unknown. Hnc, t final EOMS ar: MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 5

M, M,3 M,4U K, K,3 K,4 U M,3 M3,3 M3,4 U 3 K,3 K3,3 K3,4 U3 M 4, M3,4 M 4,4 U 4 K4, K3,4 K 4,4 U 4 P ( t ) (5) and onc t quation abov is solvd, M U K U M U K U M U K U P (6),,,3 3,3 3,4 4,4 4 In t ampl configuration, t satisfaction of t ssntial constant U = rmovs t singularity of t stiffnss matri (i.., rmovs t rigid body mod). For t ampl cas, considring lmnts of qual lngt, = L/3, t quations of motion ar: 4 U U AL 3 4 AE U 3 U3 8 L U U P t 4 4 ( ) (7) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 6

Us MODAL ANALYSIS to solv MU KU F (8) +Initial Conditions To tis nd, first solv t omognous EOMs MU KU and mak t modal matri, i K i M (9)... N (3) wr N is t activ dgrs of frdom in t systm. Using t modal transformation U () t () t, t pysical EOMS bcom in modal coordinats: m m m (3) M K Q M M K K, and T m m T wr ; T Qm F (3) ar t modal mass and stiffnss matrics (diagonal) and t modal forc vctor, rspctivly. By now, you do know ow to solv t uncoupld st of N ODES and tn rturn to pysical coordinats. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 7

Eampls How good is a FE modl? Rcall t EOM for on-lmnt M U K U F (a) T wr U U ; F F U F (a) T and M AL 6 AE, K L (a3) wit L as t bar lngt wit cross-sction A and matrial proprtis (,E). Bar wit on nd fid: Lt s find its fundamntal nat. frquncy T St U U U ; F F? F EOM (a) rducs to AL AE F 6 U L U AL AE 3 L Or U U T Tn _ FEM 3 E L / and / E (act) L HD4 T ratio of natural frquncis FEM/act =. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 8

Bar wit two fr nds: Find its fundamntal lastic mod natural frquncy T St U U U ; F F F EOM (a) rducs to AL U AE U 6 U L U Procss DOF quation abov to obtain E, L _ FEM _ FEM / T / E, (act) L Handout 4 T ratio of lastic mod nat. frquncis FEM/act=. ONE FE modl dlivrs clos prdictions for t lastic natural frquncis. A qustion to pondr: Wy dos t FE modl producs LARGER natural frquncis tan t act (analytical) ons? MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 9

A FE modl for bnding of lastic bams Figur 6 dpicts an lastic cantilvr bam wit latral forcs (F) and momnts (M) acting on it tat produc t bam latral dflction or bnding v (,t). F o and M o ar a latral forc and momnt applid at t nd of t bam (=L), and f () is a distributd forc/unit lngt. T bam as matrial dnsity () and lastic modulus (E) and gomtric proprtis of ara (A) and ara momnt of inrtia (I).,E,I F v(,t) f o f M o Fig 6. Elastic bam undr latral (bnding) displacmnts For a finit lmnt ( ) or pic of t bam wit widt, not t sign convntion: f V L M M V lmnt lngt Fig 7. Notation for sar forcs (V) and momnts (M) Lt V and M dnot t sar forc and bnding momnt. For an Eulrtyp bam MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

v M EI ; V M (33) In t FEM, discrtiz t bam () into a collction of finit lmnts, as sown blow in Fig. 8. lmnt lngt N - + + N N+ N nod or joint Fig 8. Discrtization of bam into N finit lmnts Lt v and v b t latral displacmnt and bam rotation (primary and scondary variabls). Fig. 9 sows a fr body diagram in t lmnt Ω, wit, MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

V f V3 f: Distributd forc/lngt Displacmnt V and rotation,e,i lmnt lngt Q Q + Q3 Q4 Latral forcs and momnts Fig 9. Fr body diagram for a finit lmnt in a lastic bam T sar forcs at t nds of t lmnt v Q V ( ) EI Q V EI ( ) 3 And t bnding momnts at t nds ar v Q M( ) EI 6 v Q4 M( ) EI ; v (34) (35) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés

Lt V v ; V v V 3, t, t ; V 4, t, t (36) V V 4 V V3 = = Assum tat t bam latral displacmnt and rotation (angl) in ar givn by t approimation v 4 ( t, ) i V i( t ) i (, t) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 3 4 i d d i V i ( t ) (37) From a prior discussion on t assumd mods mtod, t lmnts of t mass and stiffnss matrics for ar ij ji i j M M A d, d d i j K K E I d ij ji d d (38)

Not tat C. T sap functions satisfy t ssntial i i,..4 boundary conditions, v v, t, t V ; 3 4 () () () () V ; 3 3 3 4 ( ) ( ) ( ) ( ) (39a) v, t, t 3 () () 3() 4() d d d d d d d d V ; 4( ) ( ) ( ) 3( ) d d d d d d d d V ; (39b) T lowst ordr polynomial tat satisfis t conditions abov is tird ordr (and is twic diffrntiabl), i.., 3 vt, c c c c3 c c 3c t, 3 3 (4) Lading to t following conditions, : V c, V : V c c c c, c 3 3 c c 3c 3 V4 Solving t st of four Eqs. (4) givs (4) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 4

3 4 3 3 3 3 ( ) ( ) 3 ( ) 4 ( ).7.4...5..4.6.8 3 4 (4) Figur dpicts t sap functions. Not tat 3 4.8.8 ( ).6.4 3 ( ).6.4....4.6.8..4.6.8..6. ( ).8.4..4.6.8.4.8 4 ( )..6...4.6.8 Fig. Sap functions for structural lmnt undr bnding. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 5

Substitution of Eq. (4) into Eq. (38), rndrs t following lmnt mass and stiffnss matrics. 56 54 3 4 3 A T M M 4 54 3 56 3 4 (43) 6 6 E I 6 4 6 T K 3 K 6 6 6 6 4 (44) and t vctor of gnralizd forcs {F i } is: i F f d (45) t, it, Assuming a constant distributd forc f (,t) ovr t lmnt, obtain: F f f f f (45b) and t constraint nodal forcs ar obtaind from t virtual work prformd: W Q V Q V Q V Q V (46) 3 3 4 4 Q (46b) Hnc, Q Q Q3 Q4 Tn, t systm of quations for t lmnt ar: T T MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 6

4 4 M ijvj KijVj Fi Qi (47) j j or (47) MV +KV =F +Q wr V V V V3 V4 Assmbly of t lmnt matrics to produc t global systm of quations is asily don as mplifid bfor. B carful to kp continuity of t displacmnts at t nods (joints) and also t continuity of constraint forcs at t nods. T global systm of quations bcoms MV+KV=F+Q (48) wr t global vctor of displacmnts is V VV,, VV,,... V, V (49) 3 4 wit N as t global numbr of nods); N ; N T N N N M M K K (5) ar t global matrics of mass and stiffnss cofficints, and N ; F f Q Q (5) N ar t vctors of distributd forcs and nodal forcs, rspctivly. Not abov K is singular sinc t boundary conditions ar yt to b applid. T MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 7

T global FEM vctor of forcs Q will in gnral av zro componnts at t intrnal nods. T lmnts of tis vctor ar of t form, s Fig. : Hr k dnots t global nod numbr. Q Q Q ; Q Q Q (5) k 3 k 4 V3 = V = Q3 + Q4 + Q Q Fig. Balanc of forcs at a nod T qns. abov constitut a statmnt of quilibrium of forcs at t nodal intrfac (boundary) of an lmnt. Rcall from Eqns. (34, 35) tat v v Q Q EI EI 3 v v Q4 Q EI EI If no trnal forcs or momnts ar applid at t nod, tn MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 8

Q Q Q, k 3 Q Q Q k 4 (53) Howvr, if an trnal nodal sar forc or momnt is applid at t joint, tn t componnts of t forc vctor Q will not b zro. Considr, for ampl, t cas of a support spring wit stiffnss k s conncting t bam to ground, i.., Q Q F spring 3 ; Q Q Q F kv (54) V = = 3 k 3 spring s V V + Q3 + Q Q ks + kv s F spring Fig. Balanc of forcs at a nod wit a spring connction Not tat tis spring rstoring forc dpnds on t lmnt latral dflction, and trfor, it is unknown. Hnc, on nds to modify t global stiffnss matri and add t contribution of t support stiffnss k s.. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 9

Coordinat transformation of lmnt matrics: A plan lastic fram lmnt combins t lastic proprtis of a bar and a bam; and nc, it as tr displacmnt coordinats at ac nd (two ortogonal displacmnts and on rotation). As sown in Figur 3, tis lmnt as a local coordinat systm (,y) wr t - coordinat aligns wit t major ais (lngt) of t bar-bam. U 5 U 6 y U 4 U U 3 U Fig 3. Arbitrary fram lmnt and displacmnts T -ais is tiltd angl rlativ to a global (inrtial) coordinat systm (X, Y) to wic all lmnts in t structur will b rlatd. In t (X,Y) coordinat systm, t displacmnts ar dfind as sown in Fig. 4. X MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 3

y Y U 3 U 5 U 6 U 4 U U Fig 4. Arbitrary fram lmnt and displacmnts in (X,Y) as X in t T transformation btwn t local displacmnts i i,...6 (X,Y) to t displacmntsv i in t local coordinat systm i,...6 (,y) is givn by t (coordinat transformation) quation V =TV (55) V wr T cos sin sin cos cos sin sin cos (56) T lmnt EOMs in t (,y) coordinat systm ar (57) MV +KV =F +Q MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 3

Substitution of (Eq. 55) into (57) and pr-multiplying by T T givs t following: T M T V +T K T V =T F +T Q (58) T T T T T T T T Lt: M T M T, K T K T, F T F, Q T Q (59) and writ t EOM as: MV +KV =F +Q (6) Not tat t rsulting mass and stiffnss matrics ar still symmtric. T assmbly of t lmnt matrics procds in t usual way to obtain t global systm of quations. Constraints and rduction of dgrs of frdom: Tus far, t analysis taks all gnralizd displacmnts as indpndnt of ac otr. T assumption lad to t global systm of quations: MV+KV=F+Q (6) Frquntly, tr ariss a nd to spcify rlationsips amongst systm displacmnt coordinats. Tis is quivalnt to spcifying N displacmnts wic ar linarly indpndnt and t N +, N +,....N dpnd on t N displacmnts. rst T discussion prsntly rlats to a constraint quation of t form: f V, V,... V g V, V,... V,..., i N N N i N i N (6) N T quation abov can b writtn in matri form as: Va RV= R da R dd = Vd (63) MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 3

wr V d is t vctor of N d dpndnt coordinats or displacmnts, and V a is t vctor of N Na = N a indpndnt or ACTIVE coordinats or displacmnts. Not N + N d= N a+ N d= N. From q. (63) RdaVa RddVd find V =T V = -R R V (64) - d da a dd da a wr T da is t (N d N a ) matri transformation btwn activ to dpndnt dgrs of frdom. Now, t total global displacmnt vctor can b writtn as: Va Iaa V = Va TV Vd Tda wr I aa is a (N a N a ) unit matri. Substitution of (64) into t EOM (6) and pr-multiplying by givs: T T a a T T or T M TV +T K TV =T F+T Q MaV a +Ka V a =F a +Qa a (65) T T (66) wr t mass and stiffnss matrics ar rducd to (N a N a ) activ DOF. Not tat, T T T T M T MT, K T KT, F T F, Q T Q (67) a a a a T systm of quations (66) accounts only for t activ dgrs of frdom N a. MEEN 67 HD Introduction to FEM in Vibrations 3 Dr. L. San Andrés 33

EXAMPLE: Using ONE finit lmnt dtrmin t first natural frquncy for t bam configurations (pin-pin nds, fid nd-fr nd, fid nd-fid nd) and compar t rsults wit avialabl closd form formula. Sow t prcntag rror. T bam as lngt L, cross sctional ara A, inrtia Ip and lastic modulus E. T gnralizd mass and stiffnss matrics for bam bnding ar: LSA ME67 56 L 54 3L L L 4L 3L 3L EI 6L M = K = 4 54 3L 56 L L 3 3L 3L L 4L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 3 4 displacmnt & slop (lft nd) displacmnt & slop (rigt nd) Pin-Pin Ends: No displacmnt and momnt at ac nd st boundary conditions: Momnt Momnt 3 L 4 56 L 54 3L L 4L 3L 3L 54 3L 56 L 4L 3L 3L L 3 4 EIp L 3 6L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 3 4 = Forc Momnt Forc Momnt L 4 56 L 54 3L L 4L 3L 3L 54 3L 56 L 3L 3L L 4L 4 EIp L 3 6L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 4 = Forc Forc wic rducs to a by systm of quations for fr vibration L 4 4L 3L 3L 4L 4 EIp L 3 4L L L 4L 4 = t natural frquncis can b dtrmind by t ignvalu analysis ORIGIN I M K = M K = 4 L 7L 4 4L 3L sort( ignvals( A) ) = L EIp 3L 4L act first natural frquncy i EIp L 3 rror 4L L i L 4L i 3 L 4 EIp L 4 EIp 3 L 4 EIp L 4 EIp.954.954 5. rror.987.954 = L % EIp A 3 3

Fid nd-fr nd: zro displacmnt and slop at t fid nd, and zro sar and momnt at t fr nd. st boundary conditions: Forc Momnt L 4 56 L 54 3L L 4L 3L 3L 54 3L 56 L 4L 3L 3L L 3 4 EIp L 3 6L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 3 4 = Forc Momnt Forc Momnt L 4 56 L 54 3L L 4L 3L 3L 54 3L 56 L 3L 3L L 3 4L 4 EIp L 3 6L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 3 4 = Forc Momnt wic rducs to a by systm of quations for fr vibration L 4 56 L L 4L 3 4 EIp L 3 6L 6L 4L 3 4 = Now t natural frquncis can b dtrmind by t ignvalu analysis I M K = M K 4 L 4L 4L L L 56 EI L 3 6L 6L 4L 5 L 4 EI 6 EI L 5 9 L 3 EI 476 L 4 EI A 5 6 9 476 i sort( ignvals( A) ) i i 3.533 34.87 3.533 = L EIp act first natural frquncy.8754 3.56.8754 = L EIp rror 3.533.8754.8754 rror.483 %

Fid End - Fid End: Rduc bam into two parts, ac of lngt L/. T boundaty conditions bcom zro displacmnt and slop at t fid nd, and zro slop at t otr nd of t / bam. st boundary conditions: 4 Forc L o L = wr Lo is t original lngt of t bam L 4 56 L 54 3L L 4L 3L 3L 54 3L 56 L 4L 3L 3L L 3 4 EIp L 3 6L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 3 4 = Forc Momnt Forc Momnt L 4 56 L 54 3L L 4L 3L 3L 54 3L 56 L 3L 3L L 4L 3 EIp L 3 6L 6L 6L 4L 6L L 6L 6L 6L L 6L 4L 3 = Forc Momnt Momnt wic rducs to just on quation for fr vibration of t dflction at midspan L EIp 56 4 3 L 3 = 3 Now t natural frquncy is = 4 4 L o 4 56 EIp.736 = L o EIp 4.734 = L o EIp act first natural frquncy rror.736 4.734 4.734 rror.6 %