Electric Potential Energy and Electric Potential

Similar documents
Electric Field. Lab 4: Part 1: Electric Field from One Point Charge. Name: Group Members: Date: TA s Name:

Lab 10: DC RC circuits

Lab 8: Magnetic Fields

NAME: BATTERY IS TURNED ON TO +1.5 V. BATTERY IS TURNED ON TO -1.5 V.

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole

Experiment 1: Electric Fields and Potential Phet Lab

Representations of Motion in One Dimension: Speeding up and slowing down with constant acceleration

PHY 112L Activity 1 Electric Charges, Potentials, and Fields

Physics 1B ELECTRIC FIELDS AND POTENTIALS Rev. 3-AH. Introduction

Equipotentials and Electric Fields

Electric Field and Electric Potential

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Activity 8b - Electric Field Exploration

Hang Time Activity Background:

Electric Fields and Potentials

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts:

If you don t understand a question or how to answer it, read the lab write-up or your lab report to refresh your memory.

Equipotential Lines and Electric Fields

PHY132 Practicals Week 6 Student Guide

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018)

Science 14. Lab 1 - Potential Plotting

Remember that C is a constant and ë and n are variables. This equation now fits the template of a straight line:

Coulomb s Law Mini-Lab

Evaluation copy. Ground Temperature Measurements. computer OBJECTIVES MATERIALS PRE-LAB QUESTIONS

Question 20.1a Electric Potential Energy I

Electric Field Around a Conductor

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts:

R. Ashby Duplication by permission only.

Lab: Electric Fields Hockey *

Question 16.1a Electric Potential Energy I

Lab 3: Electric Field Mapping Lab

Changes in Energy and Momentum

Phys1220 Lab Electrical potential and field lines

Electric Field. EQUIPMENT. Computer with Charges and Fields software.

Static and Kinetic Friction

Evaluation copy. First-Class Levers. computer OBJECTIVES MATERIALS

The Spring-Mass Oscillator

Electric Fields and Equipotentials

L03 The Coefficient of Static Friction 1. Pre-Lab Exercises

Laboratory Worksheet Experiment NE04 - RC Circuit Department of Physics The University of Hong Kong. Name: Student ID: Date:

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation

Mapping the Electric Field and Equipotential Lines. Multimeter Pushpins Connecting wires

MAPPING ELECTRIC FIELD LINES FOR VARIOUS CHARGED OBJECTS

Physics Labs with Computers, Vol. 1 P14: Simple Harmonic Motion - Mass on a Spring A

In this experiment, the concept of electric field will be developed by

Hooke s Law. Equipment. Introduction and Theory

Electric Field and Electric Potential

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate)

LAB 03 Electric Fields and Potentials

Electric Field and Electric Potential (A)

1. What does the catapult exert on or apply to the plane?

Laboratory 3 Measuring Capacitor Discharge with the MicroBLIP

Electric Charge and the Electrostatic Force

Richter Scale and Logarithms

PHYSICS 211 LAB #3: Frictional Forces

Physics Exam I

Visual and Mathematical Representations of the Electric Field

PHY 123 Lab 4 - Conservation of Energy

PHYS 102 SECOND MAJOR EXAM TERM 011

Using Microsoft Excel

Physics 1050 Experiment 6. Moment of Inertia

Pre-lab Quiz/PHYS 224 Electric Field and Electric Potential (A) Your name Lab section

UNIT 102-2: ELECTRIC POTENTIAL AND CAPACITANCE Approximate time two 100-minute sessions

Bell Ringer: Define to the best of your ability the definition of:

Electric Fields and Equipotentials

Halliday/Resnick/Walker Fundamentals of Physics

Chapter 17. Electric Potential Energy and the Electric Potential

Name: Hour: Teacher: ROZEMA. Chemistry Isotopes, Decay & Half Lives

Physics 2080 Extra Credit Due March 15, 2011

Lab 2. Electric Fields and Potentials

Conservation of Momentum

2 Electric Field Mapping Rev1/05

Physics 4C Simple Harmonic Motion PhET Lab

1) Date, 2) Partner, 3) Title, 4) Purpose, 5) Materials, 6) Safety, and 7) Data Table (no observations section is needed)

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using

Lab #10 Atomic Radius Rubric o Missing 1 out of 4 o Missing 2 out of 4 o Missing 3 out of 4

Chemical Batteries. Key Words: Battery, Electrolyte, Electrochemical Cell

Unit 4, More About Forces Lab 1, Interactions Between Objects

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System)

The Coefficient of Friction

Equipotential and Electric Field Mapping

Electric Fields and Potential

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Motion II. Goals and Introduction

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

Name: Block: Date: Electrical Potentials and Electrical Fields: Potentially Dangerous Situations

Experiment 17 Electric Fields and Potentials

Physics 122 Spring 2012 Test 2

Table 1. Data for Heat Capacity Trial 1 Trial 2

EXPERIMENT: THE SPRING II Subtitle: Time Dependence of Oscillations

End-of-Chapter Exercises

Pea Lab Report Sheet Team No. Your Name

Coulomb s Law PHYS 296

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Experiment 1 Solutions: Equipotential Lines and Electric Fields

E&M: Worksheet 6 Fields, Potential, and Energy

Experiment: Go-Kart Challenge

Transcription:

Name: Lab 5: Electric Potential Energy and Electric Potential Group Members: Date: TA s Name: Objectives 1. To understand the electric potential of a point charge. 2. To understand the electric potential of a dipole. Simulation link: http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_en.html Type Charges and Fields PHET in Google and click the link. Part 1: Electric field and potential of a point charge In the last experiment we investigated the electric field of a point charge and a dipole. Electric field acts as an agent to the source charges and is present everywhere in space. Therefore, the electric field from one charged object will exert forces on other charged objects. The strength and direction of the electric field at a given point in space can be measured by measuring the electric force acting on a unit positive test charge. If the electric field due to a source charge or charge distribution is known then one can find the electric force on a charge q in the field by using the equation: F! (x, y, z) = qe(x, y, z). So far we have studied electrical interaction in terms of electric force concepts. In this lab we are going to take a look at a system of charges with a different perspective. We want to study a system of charges in terms of its electrical interaction energy or the electrical potential energy, Uelec. For that purpose we define a quantity called electric potential, V. Electric potential is defined as the electric potential energy per unit charge. Once we know the electric potential at some location, we can use it to find the electrical potential energy of charges placed at that location. This should remind you of the way we calculate electric force on a point charge in an electric field. According to the definition electric potential energy and electric potential are related by the equation: U!"!# = qv. Here V is the electric potential at the location in space which the object with charge q is located. Since energy is a scalar quantity, then V is also a scalar quantity. In future experiments you will find that one use of electric potential is for analyzing electrical circuits. 1. What is the unit of electric potential? Use the units for potential energy and charge to find express it in terms of other units.

2. Open up the electric field simulation, turn on the Grid and Show Numbers, and place a positive point charge of +1 nc at the center of the grid. Make measurements of electric potential and the magnitude of the electric field at the following points to the right of the point charge. Use the voltmeter to measure electric potential. The meter measures the electric potential at the point where the center of the cross is located. Be sure to put the units for E and V. Distance, r(m) Magnitude of Electric Field, E Electric Potential, V 0.5 1.0 1.5 2.0 2.5 3.0 3. What creates the electric field and electric potential you measured? 4. Does the electric potential around the point charge decrease or increase with increasing distance? 5. Equipotential lines are lines with equal electric potential (for example, all the points with an electric potential of 5.0 V). Using the plot tool that comes with voltmeter make two equipotential lines at r = 0.5 m and r = 1.5 m. Enable electric field vectors in the simulation. Put an electric field sensor at different points on the equipotential and note the direction of the electric field vector. What can you conclude about the direction of the electric field vector in relation to the equipotential lines? Take a snap shot of the simulation showing equipotential lines and paste to a word document. 6. Use the electric field sensor to investigate points in between the two equipotential lines. Does the electric field vector point toward the higher electric potential, toward lower electric potential, or along an equipotential line?

7. Using your data from Question #2, plot electric potential vs. r in Excel. This is called the Potential Graph. 8. One of the students in the class says that the electric potential at locations around a source charge is inversely proportional to the distance from the source charge to that location. Use your data to test this hypothesis. Explain what you did to test the hypothesis, the result of the test, and your conclusion. Label your graph and axes and include units. Copy and paste your graph along with any fitting you have done to test the hypothesis into your Word Document. Part 2: Electric force and potential energy for two charges 9. Assume that you are going to bring another +1 nc charge to the locations where you measured electric field and potential from the first +1 nc charge in Question #2. Copy the values (with units) for E and V you found in Question #2. Then calculate the magnitude of the electric force on the second charge, the direction of the force, and the electrical potential energy of the system. Refer back to the first page if you aren t sure how to calculate F or U. r(m) E V Force (N) Force Direction Uelec (J) 0.5 1.0 1.5 2.0 2.5 3.0

10. Using the ideas of electric field and force, explain what would happen to a proton if released from rest at r = 2.0 m. (simulation does not show this). 11. Would the proton released from rest move to a region of higher electrical potential or lower electrical potential? 12. Would the proton released from rest move such that the system would have higher potential energy or lower potential energy? 13. Now we will investigate the force, energy, and potential when a negative charge is placed in the field created by the first positive charge. Assume that instead of using a second positive charge, you brought a -1 nc charge to each of the locations where you measured electric field and potential from the first +1 nc charge in Question #2. Again copy the values (with units) for E and V you found in Question #2. Then calculate the magnitude of the electric force on the second charge, the direction of the force, and the electrical potential energy of the system. Again refer back to the first page if you aren t sure how to calculate F or U. r(m) E V Force (N) Force Direction Uelec (J) 0.5 1.0 1.5 2.0 2.5 3.0

14. Using the ideas of electric field and force, explain what would happen to an electron if released from rest at r = 2.0 m? (simulation does not show this). 15. Would the electron released from rest move to a region of higher electrical potential or lower electrical potential? 16. Would the electron released from rest move such that the system would have higher potential energy or lower potential energy? 17. Compare your answers in Questions 10 and 14. Summarize how the direction of the electric field and the sign of the charge placed in that field determine the direction of the force. 18. Compare your answers in Questions 11 and 15. Do electric forces always push the charged object toward a region of higher or lower electric potential? Support your answer.

19. Compare your answers in Questions 12 and 16. Electric forces are conservative forces. Do electric forces always push the system toward higher or lower potential energy? Support your answer. Part 3: Conclusions 20. Summarize the relationship of electric field to electric force. 21. Summarize the relationship between electric field vectors and equipotential lines. Instructions on how to submit the graphs: 1. Open a word document and type the names of all present group members. 2. Copy the snapshot of your simulation from Question 5 in to your Word document. 3. Copy your Excel graph from Question 8 (with title and axis labels) to your Word document. 4. Print your Word document and attach it to your lab report.