Non-thermal emission from pulsars experimental status and prospects

Similar documents
detector development Matthias Beilicke X ray Science Analysis Group meeting (12 April 2013, Monterey, CA) Collaborators: GSFC, BNL

TeV γ-ray observations with VERITAS and the prospects of the TeV/radio connection

X-ray polarimetry and new prospects in high-energy astrophysics

The Fermi Gamma-ray Space Telescope

A NEW GENERATION OF GAMMA-RAY TELESCOPE

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

Development of a 3D-Imaging Calorimeter in LaBr 3 for Gamma-Ray Space Astronomy

Recent Observations of Supernova Remnants

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

Fermi: Highlights of GeV Gamma-ray Astronomy

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Gamma-ray Astrophysics

Development of a Hard X-Ray Polarimeter for Solar Flares and Gamma-Ray Bursts

Future Gamma-Ray Observations of Pulsars and their Environments

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Observing Galactic Sources at GeV & TeV Energies (A Short Summary)

Remnants and Pulsar Wind

Extreme high-energy variability of Markarian 421

Particle acceleration and pulsars

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Very-High-Energy Gamma-Ray Astronomy with VERITAS. Martin Schroedter Iowa State University

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

GLAST and beyond GLAST: TeV Astrophysics

Radio Observations of TeV and GeV emitting Supernova Remnants

Development of a Dedicated Hard X-Ray Polarimeter Mark L. McConnell, James R. Ledoux, John R. Macri, and James M. Ryan

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

Recent highlights from VERITAS

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

Search for TeV Radiation from Pulsar Tails

High Energy Polarimetry Missons in Japan; PoGOLite, SPHiNX, PolariS

A. Takada (Kyoto Univ.)

CTB 37A & CTB 37B - The fake twins SNRs

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

Are supernova remnants PeV accelerators? The contribution of HESS observations

Potential Neutrino Signals from Galactic γ-ray Sources

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

Pulsar Wind Nebulae: A Multiwavelength Perspective

Motivation Electron-Tracking Compton Telescope 1 st Flight of SMILE Preparation for next step summary

VERITAS Observations of Supernova Remnants

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Galactic Accelerators : PWNe, SNRs and SBs

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

Status of the MAGIC telescopes

Pulsars with MAGIC. Jezabel R. Garcia on behalf of the MAGIC collaboration

Motivation Electron-Tracking Compton Telescope 1 st Flight of SMILE Preparation for next step summary

VERITAS: exploring the high energy Universe

Special Topics in Nuclear and Particle Physics

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

TeV Gamma Rays from Synchrotron X-ray X

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

PoGOLite, PoGO+, SPHiNX High-Energy Polarimetry Missions between Japan and Sweden

Gamma-Ray Astronomy from the Ground

for the HARPO Collaboration: *

Measurement of the CR e+/e- ratio with ground-based instruments

Galactic sources in GeV/TeV Astronomy and the new HESS Results

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

TeV Galactic Source Physics with CTA

Supernova Remnants and Cosmic. Rays

GRB Polarimetry with POLAR. Merlin Kole

Particle Acceleration in the Universe

TEV GAMMA RAY ASTRONOMY WITH VERITAS

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble

Balloon-borne experiment for observation of sub-mev/mev gamma-rays from Crab Nebula using an Electron Tracking Compton Camera

PoS(Extremesky 2011)036

The Time Evolution of Pulsar Wind Nebulae

arxiv: v1 [astro-ph.he] 28 Aug 2015

Detector R&D in KAPAC

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Ground Based Gamma Ray Astronomy with Cherenkov Telescopes. HAGAR Team

Gamma-ray observations of blazars with the Whipple 10 m telescope

Very High-Energy Gamma- Ray Astrophysics

1. Motivation & Detector concept 2. Performance 3. Applications 4. Summary

Shell supernova remnants as cosmic accelerators: II

VERITAS Prospects for Geminga Pulsar

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology

Very high energy gamma-emission of Perseus Cluster

Particle acceleration in Supernova Remnants

H.E.S.S. High Energy Stereoscopic System

Masaki Mori. Institute for Cosmic Ray Research, University of Tokyo

What can Simbol-X do for gamma-ray binaries?

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

Supernova Remnants and GLAST

Polarimeter for Small Satellite Design, Feasibility Study, and Ground Experiments + Balloon Experiment

Explosive reconnection of the double tearing mode in relativistic plasmas

OBSERVATIONS OF VERY HIGH ENERGY GAMMA RAYS FROM M87 BY VERITAS

GAMMA-RAYS FROM MASSIVE BINARIES

Diffuse Gamma-Ray Emission

Transcription:

Non-thermal emission from pulsars experimental status and prospects # γ!"# $%&'()

TeV γ-ray astrophysics with VERITAS ( $γ" *$%&'()

The charged cosmic radiation - how it all began... Discovery: Victor Hess (1912) Characteristics Isotropic in-fall Nucleons (~98%), electrons (~2%) (composition energy dependent) Energy spectrum: power-law Origin: not finally understood (shock acceleration, Fermi 1&2) Problem: Direction of charged particles lost in magnetic fields + γ, # -

TeV γ-ray astrophysics: Study hadronic/leptonic particle accelerators π. γ ( $ /γ ( $ " /γ + γ ( $ 0'1

TeV γ-ray astrophysics with Cherenkov telescopes Gammas enter earth's atmosphere and produce air showers & Cherenkov light Imaging of Cherenkov light with telescopes: reconstruct direction & energy Reject CR background: image properties γ γ +

The VERITAS Cherenkov Telescope Array (Very Energetic Radiation Imaging Telescope Array System)!" #, 4% 25 )401 (5061 2%&01 5'0' 1,23 Each camera: 499 PMT pixels Energy range: 0.1-30 TeV ( E/E <20%) Sensitivity: 0.1(0.01) Crab in 0.5h (26h)

Introduction: TeV γ-ray astrophysics Probe non-thermal universe Observations per year: 700-800h (+200h moon data) Dynamical field: 2000: handful of sources, 2011: >100 sources $%&'() ## $ %!$

Galactic TeV sources 3 ( $

The galactic plane at TeV energies &' ( 3 ) 07..;1 9.:=>9? 2)) +% 2& &!<=:=9 0+%1 5, 2& %@=..( $ ) 07..812 897:;

Class1: Supernova Remnants (SNRs) TeV emission from SNR: - SN ejecta expand into interstellar medium - shock acceleration (charged particles) - TeV γ-rays (secondary reactions) Open question: hadronic or leptonic? MWL (morphology and SED): particle population & emission mechanisms!"01 2=..A NASA, ESA, Zolt Levay (STScI) ( $ )! *+ " %, -. ) / ( $ 2=..A0+%1

Class1: Supernova Remnants (SNRs): RX J 1713 indications for lepton domination (Ellison, Fermi Symposium 20111) &!<=:=9 ( 0 1, " *

Brogan et al. (2006) H.E.S.S. Nanteen radio telescope Class1b: SNR + molecular clouds 2 C * 01 γ" +, 2&/ 7? $%&'() 09>B 1 ( $

Class2: Pulsar wind nebulae (PWN) TeV emission from PWN: - pulsar driven bubble of relativistic particles - shock acceleration (SNR or ISM interaction) - TeV γ-rays emission: inverse-compton Example 'Boomerang': age: 10,000 years, de/dt = 2.2 x 10 37 erg/s =87.+D0% 6 # 1 $%&'() 0$%&'()1 09>B 1 0( $$%&'()1

Class3: High mass X-ray binaries (LSI +61 303)!"γ#$% &' #()*+,")-!0$. ' %' $'.'' (%/$'%'0123 &'' '%- )%%!4)5467486&-

Class4: Unidentified TeV γ-ray sources Unidentified TeV γ-ray sources: - no counterpart at other wavelengths - mostly extended - emission mechanism unknown ) 07..;1)E)89>=.=9 +% 1 0?89D1&, # +%<=9.9"A9=

Can we see a pulsar at 0.1 TeV energies?

High-energy emission from pulsars: polar cap vs. outer gap models 0!%!&- '!9%$%%! %! $!''!!' %%!''!&!!- %!%$:$'&9%$-;+ $%''! '% $%'<= ' <=9''!%$>&*- '%%& 8 %!- '!%$ %$:$+%''$$ %$?*#'%'&!'-!!! @:$!!!: ' ' >$!&- >$'$!!$%& Ω-;!%#!' $$. $ A :!'! %%!!%'%$:$' ''$%'! B#!%+&'+ -!: ' # ', F@ G

What can be observed? 1%' :!$9%$!@'&'!;%'- C$'%'!%' C: 0&-404 0 $& '- C'&$'0-': %$ :!@': $!;(1$!%!' '#!&'$; -!% % C!%'%''!&' #- '! 'Ω' '%!'''!

High-energy emission from pulsars: polar cap vs. outer gap models #)05 & 7.==1

Pulsar light curves measured at different energies

High-energy emission from pulsars: polar cap vs. outer gap models #)+05 & 7.==1

High-energy emission from pulsars: polar cap vs. outer gap models #(05 & 7.==1

High-energy emission from pulsars: polar cap vs. outer gap models #)05 & 7.==1

The Crab pulsar and nebula $':'A8&D<.%- ('%$! 89 E &' (γ#$!- 0+ ' $! &' "γ#$%- )'$!$%$F"!$' ( $ #2 #H( $ 0$%&'()1

The Crab pulsar and nebula $':'A8&D<.%- ('%$! 89 E &' (γ#$!- 0+ ' $! &' "γ#$%- )'$!$%$F"!$' I, "

The Crab pulsar: seen above 100GeV N.Otte, A.McCann, M.Schroedter G''' %!.'D 'A* H,").'!: %$:$'':&=*- ' =!! &:'$:!%- #%'!#&$ -,")$!=* =*$!!'$! (&H 4'!#$3- E ''($! &%%!'@'$ ' - %$ I' $!42? E # 234( $5" E br = 24 GeV 6 3/4 sqrt(radius/lcyl) 0+",A 1

!"D, 5

High-energy emission from pulsars: polar cap vs. outer gap models #$ 05 & 7.==1

Polarized X-rays: missions/status Stokes parameters: - Describing linear (S 1,S 2 ) and circular (S 3 ) polarization - Components of the electric field [unit: flux density]. Processes resulting in polarized radiation: - Synchrotron radiation (linear) - Curvature radiation (circular) - Thomson scattering & Bremsstrahlung - Compton scattering off polarized photon field X-ray polarimetry: Status J Only one dedicated X-ray polarimetry mission so far: OSO-8: 2.6/5.2 kev polarization of the Crab (20%, 30 o relative to jet) [ApJ, 220, L117, 1978] J INTEGRAL: Crab polarization (0.1-1MeV): ~46% [Science, 321, 1183, 2008] J Main difficulty: Need high statistics to determine Stokes parameters X-ray polarimetry: Future missions: J Gravity and Extreme Magnetism SMEX (GEMS): 2-10 kev (100 x OSO-8) [Swank] J Astro-H: E>10 kev, Compton Polarimetry (systematics) [SPIE, 7732, 34, 2010]

Polarized X-rays: physics motivation (pulsars) Neutron stars, pulsars, PWN & Magnetars: J Radiation transfer in strongly magnetized plasmas: polarization (curvature and/or synchrotron emission), phase & energy dependent. J Magnetars, strong magnetic fields (soft γ-ray repeaters): cyclotron features Constrain magnetic field and particle populations

X-Calibur: Design General idea: Compton scattering angle (linear polarized X-rays): more likely to E field vector 1: low-z Compton scatterer (Az dependence) 2: high-z material to photo-absorb 3: Signature in distribution of scattering angles X-Calibur polarimeter design: J Scintillator slab (low-z Compton scatterer) J Detect scattered X-rays: high-z CZT crystals J Operate polarimeter in X-ray telescope High fraction of unambiguously identified Compton scatter events

X-Calibur: Design drawings!"# Rotation mechanism: Reduce systematic effects

X-Calibur: Design (prototype in the lab) )7!! ' % 8 ' %

X-Calibur: First measurement 1/3 9! : * + " )!! %

X-Calibur: First measurement 2/3 Calibrate X-Calibur: J Calibrate CZT detectors with Eu 157 source (4.1 kev FWHM @ 40keV and 5.0 kev FWHM @ 122keV) J Azimuthal acceptance: unpolarized Eu 157 beam Measure polarized beam: J Scatter Cs 137 source (662 kev) off lead brig J Collimator: only allow 90deg scattering angle J Entering X-Calibur: 288 kev polarized beam!"# *+ " ;;5(<! : *+ " 005(

X-Calibur: First measurement (results) Azimuthal scattering distribution: J Incoming beam: 288keV, 55% polarized, µ=0.4 J Only PMT/CZT coincidence (Compton) events J Correct for azimuthal angle covered J Correct for azimuthal detector acceptance Measurements in agreement with expectations " 7?? $ % D #

X-Calibur: Operate in InFOCuS X-ray telescope '54 InFOCuS X-ray telescope: J Grazing incidence Wolter X-ray mirror (changes polarization by <1%, Katsuta et al. 2009) J Already flown successfully (Tueller et al.) J Weight: 1.4t, focal length: ~8m!"# Benefit of X-Calibur/InFOCuS: 1: High detection efficiency (80% of photons) 2: low background (focusing, low CZT volume) 3: control & reduction of systematics (rotation)

X-Calibur: Design (scatterer and absorber) Low-Z Compton scatterer: J Scintillator rod (EJ-200, 16cm, ρ~1g/cm 3 ) J 80keV X-rays Compton-scatter (p>90%) J scintillator read by PMT (Hamamatsu R7600U) High-Z photo absorber: J 2x2 cm 2 CZT crystals (8x8 pixel anode) Endicott Interconect, Quikpak/Redlen, Creative Electron J Bonded to ceramic chip carrier J Read by ASIC (G. DeGeronimo & E. Wulf) )7 =( )7!

X-Calibur: Simulations Simulate X-Calibur performance: J Use Geant4 package with Livermore model (http://geant4.cern.ch) J Assume X-Calibur/InFOCuS flight (5.6hrs) J Assume Crab-like source: energy-dependent polarization degree and angle ApJ, 220, L117 (1978) and Science, 321, 1183 (2008) Compare to competing designs: J See Guo et al: arxiv 1101.0595 (2010) X-Calibur: detection efficiency > 80% modulation factur µ~0.5