Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Similar documents
Temperature Control in Autothermal Reforming Reactor

Effects of Surface Roughness on the Emissivity due to Oxidation of Nuclear Graphite

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

The Study of Structure Design for Dividing Wall Distillation Column

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

History and Status of the Chum Salmon Enhancement Program in Korea

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Surface Reaction Modeling for Plasma Etching of SiO 2

Effect of Precipitation on Operation Range of the CO 2

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (speek/nafion): Effect of Binder Content

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

r*tt7v Progress, Ibe Ur)ft>ersal LaWof J^atare; Th>oagbt, fbe 3olA>er)t of Jier Problems. CHICAGO, SEPTEMBER MRS. ADA FOYE.

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

[2]... [1]

Lecture 6 - Bonding in Crystals

Research Article The Influence of Pores on Irradiation Property of Selected Nuclear Graphites

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;". D* 1 = Z)& ^. H N[Qt C =

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes

DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

Physical Science 430 LaurenHill Academy

M09/4/CHEMI/HPM/ENG/TZ2/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES

Thank You! $20,000+ Anonymous

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

DYNAMIC CHARACTERISTICS OF A PARTIALLY FLUID- FILLED CYLINDRICAL SHELL


Book of Plans. Application for Development Consent. Thames Tideway Tunnel Thames Water Utilities Limited. Application Reference Number: WWO10001

How do I join? . Insurance is available for $10.00 for Night Club Cards and $25 for Night Season Passes.

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE-

Chapter 12: Structures & Properties of Ceramics

Quality Control Using Inferential Statistics In Weibull Based Reliability Analyses S. F. Duffy 1 and A. Parikh 2

A L A BA M A L A W R E V IE W

Novel Dispersion and Self-Assembly

Chemistry Standard level Paper 1

ME 4232: FLUID POWER CONTROLS LAB. Class #5 Valve Modeling


Ceramic Processing Research

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites

Electronic Supplementary Information. Direct synthesis of H 2 O 2 catalyzed by Pd nanoparticles encapsulated in multi-layered

Supporting Information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

+ +r lk+ + q +p np p rn+ Qp L + +p+ + P P +P+ P P+ P P R + R K. r+ + rk q pp lp+ + + pp+ p L + +N n + + +Q+P R P PP+ + P +K+R+L+

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Chemistry Key Concepts - Atomic structure

Rational design of oxide/carbon composite to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide

PROGRESS TEST-5 RBS-1801 & 1802 JEE MAIN PATTERN

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

Effect of the ph and Basic Additives on the Precipitation of Calcium Carbonate during Carbonation Reaction

9.9 L1N1F_JL 19bo. G)&) art9lej11 b&bo 51JY1511JEJ11141N0fM1NW15tIr1

CP Chemistry Semester 1 Final Test Review 1. Know the symbol and the power of 10 for the following metric prefixes: A. Mega B.

CHAPTER 3. Crystallography

See, Sketch, Shoot. A Study Abroad program offered by Coastline Community College and ACCENT International Consortium for Academic Programs Abroad

SCWR Research in Korea. Yoon Y. Bae KAERI

Work-Function Decrease of Graphene Sheet. Using Alkali Metal Carbonates

Atomic structure & interatomic bonding. Chapter two


Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr.

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

2.1 Periodicity. Dobereiner Law of Triads:- If you look at the properties and relative atomic masses of 3 elements in group 1:-

M10/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

n

Bonding Review Questions

EVALUATION OF INTEGRALS RELATED TO THE MAGNETIC FIELD INTEGRAL EQUATION OVER BILINEAR QUADRILATERALS

CHAPTER 2. Atomic Structure And Bonding 2-1

FICH~:s lciithyo\l~~trio~es.

,. *â â > V>V. â ND * 828.

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

AS LEVEL CHEMISTRY BONDING AND STRUCTURE PERIODICITY

2-1 The Nature of Matter

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2

Temperature programmed desorption (TPD) studies on nuclear carbon materials charged with hydrogen at elevated temperatures

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Introduction to Engineering Materials ENGR2000. Dr. Coates

1 Which of the following has the highest melting temperature? C C 10 H 22. D SiO 2. (Total for Question = 1 mark)

Omnidirectionally Stretchable and Transparent Graphene Electrodes

Nuclear forces and their impact on structure, reactions and astrophysics

Optimal Hydrogen Recycling Network Design of Petrochemical Complex

The Seventeen Plane Groups (Two-dimensional Space Groups)

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

Periodicity SL (answers) IB CHEMISTRY SL

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

22.06 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS

Atomic Structure & Interatomic Bonding

Learning High-Dimensional Data with Artificial Neural Networks. Université catholique de Louvain (Belgium) Machine Learning Group

Form 6 Chemistry Notes Section 1 1/7 Section 1 Atoms, Molecules and Stoichiometry

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Transcription:

Carbon Science Vol. 7, No. 3 September 2006 pp. 196-200 Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite Kwang-Youn Cho, Kyung-Ja Kim, Yun-Soo Lim 1, Yun-Joong Chung 1 and Se-Hwan Chi 2 Division of Nano Materials Application, KICET, Seoul 153-801, Korea 1 Department of Ceramic Engineering, Myongji University, Yongin 449-728, Korea 2 Department of Nuclear Hydrogen Project, KAERI, Daejeon 305-353, Korea Ì e-mail: kycho@kicet.re.kr (Received July 3, 2006; Accepted September 18, 2006) Abstract Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at 600 C, based on the sample of ASTM C 1179-91. Keywords : Oxidation, Nuclear, Geometry, Thermal Gravimetry, Chemical Reaction 1. lp c p van der Waals, a b p o p p s p ~v s p p sp. p k c p d r q o p, p a b p r r m lr. lp l p p p s v p. lp o ˆ po l pp r p n kr l pl e p n. lp p p r rq,, q ll n p. lp p t q s l p lˆ p l o rp. q oq o p l p l o p q ~, vv~ l lp n p. o q lp 800 o C p ml t q s pl n p. t q vl s rp p p oq vr l r ql pˆ p o r qp oq l r rp rp p p oq p v. t q s l k v p e rp dp v rp v lp t q s l p rp r e q }k r ql o p ˆo. t q s l l r v p rl p pl. l lp t q s v p Ž}p eq lp Ž}p oq l p p e oq krl rp p p l lp Ž}p eq e v lp ~ p r p. oq l n lp ~ rp t q s pnl m p p. l p o ˆ (C) p vp ll rp p l p. p oq ml nm p p, q vtp n oq nms p 1000 o C p p l o m kr o p n tn. v lp l l v k. lp 450 o Cl 1000 o C p v m ml o ˆ p [1] p oq l n ll pp oq p er nms l l r. ll 600 o C p rml r l e p p ASTM C 1179-91[2]l re l p. v ASTM C 1179-91l p p r p m p p

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite 197 ˆ oq e, l l m v. l oq l n nˆ p l IG-110p m l m m. m, e l v r l o p p l m p m. e p l o e p ASTM C 1179-91l p l 600 o C l qe ov l, r, r/ l m p m. 2. p l l n e p oq l t n lq p nˆ p IG-110p. l(ig- 110)p CIP p ~ rs l p p 1p ˆ p. oq p q, ~, vv~ l n l ~ p < 20 ppmp. 1.77 g/cm 3 p ˆ p 8.93 GPa, 37.4 MPa, k 51p. oq l IG-110p p p 10 μm n p p v p. y m l e p Mettler toledo p SDTA 851e n l l p p l (%) (wt%/min) r m. 600, 700, 800, 900, 1000, 1100, 1200 o Cl 12 e ov l lp e. (dry air) 40 ml/min tp m. le p l q, ASTM C 1179-91p e r l Muffle Funace n l lp l 600 o Cl t 12 e ov l m [2]. p e p o p v p p m. e p v 1 mm, 4 mm, 6 mm, 10 mm 60 mm 5sp e p 5 j e e p, r, r/ Table 1. Properties of nuclear graphite (IG-110) Properties IG-110 Bulk Density (g/cm 3 ) 1.76 Young's Modulus (GPa) 8.93 Flexural Strength (MPa) 37.4 Shore Hardness 51 Impurity (ppm) < 20 Ave. Grain Size (μm) 10 p l m p m. 3. y yp Fig. 1, 2 l(ig-110) 600, 700, 800, 900, 1000, 1100 1200 o Cl 12 e ov l l ˆ p. m v l l p pl. 600 o Cl 1000 o C v m v l r 1000 o C p l d r. m l ove p v l p v e m. p Fuller Okoh 750 o C l e l m p p [3]. eq l l p p p p n r v. s v l p p ƒv m r rp eq l r l 0p p. p p l 40~50 wt% v v kk p f l p p p ƒv p p p. v ove v l v l p l p l v r l t pp p mlp 1000 o C p l v p v. 1000 o C p l pp l vt l l p p v kpl v e p. lp o p v lp r ˆl p l k p. o p rt o, Fig. 1. TG Curves of nuclear graphite in terms of temperatures.

198 K.-Y. Cho et al. / Carbon Science Vol. 7, No. 3 (2006) 196-200 l p pl 1000 o C p l pp l vt l pl o l p p [3, 6]. x w *( yp Fig. 2. Oxidation rate of nuclear graphite in terms of temperatures. p rp l eq [4]. rl (O 2 )m ˆ (C) CO 2 po oq kr p l rp. p rp v 3n j v. v, e p v 3n v. l l p CO 2 p v eq l l l p r p eˆ eq. rp 3n v l v v CO 2 p p dm }pl v pr rrp rp. p rp 600~1200 o C r m mll p rn 1000 o C p l l vt pp l v k v p p p. Fig. 3p l p p ˆ p. 1000 o C p l 5 wt% l ˆ l 700 o Cl 33 wt% l ˆ p. p 500~600 o Cp rm mll pl p pl lp Fig. 4p e p l ˆ l. qp e p v p l. 600 o Cl 1000 o Cl l p v p lp qp e p v p l. p rp lp eq 500 o C p l 1000 o C p v lp m ml o. 500 o C l pp l p p, l v k e p m l el pl p v l p l. 800 o C l pp l v kr v rp l t l v Fig. 3. Oxidation weight of nuclear graphite at the maximum oxidation rate as a function of oxidation temperature. Fig. 4. TG of nuclear graphite as a function of diameter.

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite 199 Fig. 5. TG curves of nuclear graphite in terms of diameter at 800 o C. pl. 1000 o Cl pp l v n k p l. l v p m e r~p r r v k. 600 o C p pp e p l el l e p p m p lp qp v, qp e p v p l. 1000 o Cl p pp l vt l pl l e p rp e p p m p lp qk rp qp e l v p l. Fig. 5, 6p 800 o Cl e p r v ˆ p. qp e p ˆ. l e p qp e p q ˆ Fig. 7. Oxidation rate of nuclear graphite in terms of surface area. 600 o Cm 1000 o C m p ˆ p. p p o l p m qp e p ˆ o m l vm e e p pl l p m p p p Ž [7]. v, l v r l m p p Ž, e p l p ˆ p Ž. Fig. 6p l e p ˆ p pre ov p p p. p p e p p CO 2 p r o kk p re ov p Ž. Fig. 7, 8, 9p ASTM C 1179-91l p l Muffle Furnacel e p l pp r,, r/ ˆ l. r l. Fig. 6. Oxidation rate of nuclear graphite in terms of diameter at 800 o C. Fig. 8. Oxidation rate of nuclear graphite in terms of volume.

200 K.-Y. Cho et al. / Carbon Science Vol. 7, No. 3 (2006) 196-200 Fig. 9. Oxidation rate of nuclear graphite in terms of S/V ratio. 600 o C pl p v l r~l v p l m v p m p lp [5] r m. p v p r/ ˆ e (1)l p d m. r/ =6/D (1) *l D e p Fig. 9p r/ l ˆ l. r/ l r v p. p Fig. 6 l p e p pl vp CO 2 r m p p p qp e p r/ ƒ CO 2 r o l p Ž r/ qp e p pl vp CO 2 r o kk qk v p Ž. l r/ l p n lq p l p ˆ l op p p p. v, ls l osv o l v m o p p. 4. 600 o Cl 1000 o C v m v l r 1000 o C p l m v l v ll. m l ove p v l p v e m. 1000 o C p l 5 wt% l ˆ l 700 o Cl 33 wt%l ˆ p. p 500~600 o Cp rmmll p l p pl lp l p pl 1000 o C p l pp l vt l pl o l p p. qp e p v p l. 600 o Cl 1000 o Cl l p v p lp qp e p v p l. p o l p m qp e p ˆ o m l vm e e p pl l p m p p p Ž. e p ˆ p pre ov l. p p e p p CO 2 p r o kk pre ov p Ž. r/ l r v p. y [1] Xiaowei, L.; Charles, R. J.; Suyuan, Y. Nuclear Engineering and Design 2004, 227, 273. [2] ASTM C 1179-91 [3] Fuller, E. L.; Okoh, J. M. Journal of Nuclear Materials 1997, 240, 241. [4] Chunhe, T.; Jie, G. Journal of Nuclear Materials 1995, 224, 103 [5] Neighbour, G. B.; Hacker, P. J. Materials Letters 2001, 51, 307 [6] Kurumada, A.; Oku, T.; Harada, K.; Kawamata, K.; Sato, S.; Hiraoka, T. Carbon 1997, 35, 1157. [7] Moormann, R.; Hinssen, H. K.; Kuhn, K. Nuclear Engineering and Design 2004, 227, 281. [8] Mitchell, B. C.; Smart, J.; Fok, S. L.; Marsden, B. J. Journal of Nuclear Materials 2003, 322, 126. m v l l p pl.