CONCEPT ON SUSTAINABLE SAND MINING MANAGEMENT IN MERAPI AREA

Similar documents
DEBRIS FLOW DISASTER MITIGATION THROUGH COMMUNITY-BASED INTEGRATED SEDIMENT MANAGEMENT (BEST PRACTICE IN MT. MERAPI AREA, INDONESIA)

The drag forces exerted by lahar flows on a cylindrical pier: case study of post Mount Merapi eruptions

EFFECT OF SAND MINING ACTIVITY ON THE SEDIMENT CONTROL SYSTEM (A CASE STUDY OF SOMBE-LEWARA RIVER, DONGGALA, INDONESIA)

The Application of Sabo Technology for Lahars Flood Mitigation and Warning System in Volcanic Area. Agus Sumaryono Bambang Sukatja F.

Socio-Eco-Engineering-based Approach on Integrated Sediment Management in Mt. Merapi Area, Indonesia

Debris flows and flash floods in the Putih River after the 2010 eruption of Mt. Merapi, Indonesia

A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM

ADDRESSING FOOD, ENERGY AND WATER NEXUS IN A VOLCANIC AREA

EVALUATION ON THE IMPLEMENTATION OF EARLY WARNING SYSTEM FOR DEBRIS FLOW IN MERAPI AREA (CASE STUDY AT BOYONG RIVER)

Universitas Gadjah Mada implements research, enhances knowledge, empowers society Join us to lead the way!

1. Outline of the Workshop

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido

Sylvain Charbonnier. PASI Workshop About 60% of Indonesians live around 16 active volcanoes on the island of Java

A STUDY ON DEBRIS FLOW OUTFLOW DISCHARGE AT A SERIES OF SABO DAMS

NUMERICAL ANALYSIS OF THE BED MORPHOLOGY IN THE REACH BETWEEN CABRUTA AND CAICARA IN ORINOCO RIVER.

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

Development of Kanako, a wide use 1-D and 2-D debris flow simulator equipped with GUI

EFFECT OF TWO SUCCESIVE CHECK DAMS ON DEBRIS FLOW DEPOSITION

Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan

The Truth about Paroxysmal Merapi Volcano s Eruption from Geomorphology of Southwestern Merapi s Fluviovolcanic Plain

Sedimentation in the Nile River

Sediment Transport Analysis of Sesayap River, Malinau District, North Kalimantan

Strategies for managing sediment in dams. Iwona Conlan Consultant to IKMP, MRCS

Indonesia Internship September 1-12, 2013

APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING FLOOD HAZARD MAPPING, LAWS AND AUTHORITIES COORDINATION

SEDIMENT TRANSPORT ANALYSIS FOR SECURING WATER (CASE STUDY : UPPER JENEBERANG RIVER)

A distributed runoff model for flood prediction in ungauged basins

New Approaches to Restoring NH s Rivers Natural Channel Design and Dam Removal

Volcanic Disaster Mitigation for Living in Harmony with Active Volcanoes

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

Bawakaraeng Urgent Sediment Control Project

The Subsurface Soil Effects Study Using the Short and Long Predominant Periods From H/V Spectrum In Yogyakarta City

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

UNIVERSITY GADJAH MADA EUBIOS YOUTH LOOKING BEYOND DISASTER (LBD5) FORUM 4-8 SEPTEMBER, Hosted by: Universitas Gadjah Mada

Characteristics of Step-Pool Morphology in the Mountain Streams of Japan

Preface. EDL Indonesia Vietnam Internship Instructor Team. Naoko Kaida, Norifumi Hotta and Kuniaki Miyamoto

GUIDELINES FOR CONSTRUCTION TECHNOLOGY TRANSFER DEVELOPMENT OF WARNING AND EVACUATION SYSTEM AGAINST SEDIMENT DISASTERS IN DEVELOPING COUNTRIES

GENERAL. CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES Background of the Guidelines Purpose of the Guidelines...

Dolores River Watershed Study

SEDIMENTATION AND ITS COUNTERMEASURE AT THE OFF-TAKE AREA OF NEW DHALESWARI RIVER

8 Current Issues and Research on Sediment Movement in the River Catchments of Japan

LECTURE #11: Volcanoes: Monitoring & Mitigation

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation)

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS

Debris Avalanches. Debris avalanche deposits on a volcano in Chile. All of the area in the foreground is buried by a thick debris avalanche.

CRISIS MANAGEMENT DURING THE 2010 ERUPTION OF MERAPI VOLCANO

PRESSURE AND SCOURING AROUND A SPUR DIKE DURING THE SURGE PASS

APPENDIX-IV Sediment Balance

CHANGES OF RUNOFF MECHANISM OF THE BRANTAS RIVER OVER THE PAST 30 YEARS

Multiscalar Approach of Merapi Volcanic Erosion - Approche Multi Scalaire d Erosion de Volcan Merapi -

Hiroshi Takebayashi Disaster Prevention Research Institute, Kyoto University

Technical Memorandum No

Floods Lecture #21 20

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY

Geography. Key facts. Volcanoes and volcanic eruptions

Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT

MORPHOLOGICAL RESPONSE OF RIVER CHANNEL DUE TO WEIR RECONSTRUCTION

Born in Unzen The World s First Unmanned Construction of Multilayer Sediment Control Dam Using Sediment Forms Unzen Restoration Project Office

Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas

How to predict the sedimentological impacts of reservoir operations?

Volcanoes. Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman

Learning from Bengkulu Earthquake : Preliminary observation on Impacts of the September 12, 2007 Earthquake in Bengkulu, West Sumatra, Indonesia

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan

Chapter 1: Earth as a System

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

Stop 1: Marmot Dam Stop 1: Marmot Dam

Quasi-three dimensional computations for flows and bed variations in curved channel with gently sloped outer bank

Why Geomorphology for Fish Passage

Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria

Hydraulic and Hydrologic Modeling of Steep Channel of Putih River, Magelang District, Central Java Province, Indonesia

A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE

Volcanoes. volcanic hazards. Image courtesy of USGS.

UGRC 144 Science and Technology in Our Lives/Geohazards

Dams, sediment, and channel changes and why you should care

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan

Do you think sediment transport is a concern?

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant

CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER TONE RIVER

Erupted and killed approximately 15,000 people 200 years ago

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

Deep-Seated Landslides and Landslide Dams Characteristics Caused by Typhoon Talas at Kii Peninsula, Japan

Part II: Succession Stations

Guidance for GEOGRAPHY End of Year Examination 2016

Mekong Sediment from the Mekong River Commission Study

Catastrophic Events Impact on Ecosystems

Constructive & Destructive Forces

3/7/17. #16 - Case Studies of Volcanoes II. Announcements Monday 2/27

Sediment trapping efficiency of modular steel check dam in laboratory experiment and field observation

LOCATIONS OF SELECTED MITIGATION SITES IN JAPAN

Subcommittee on Sedimentation Draft Sediment Analysis Guidelines for Dam Removal

CHALLENGES ON SEDIMENT- RELATED DISASTER MITIGATION

ADVENTINO1, Djohan Rizal PRASETYA1, M. Faris RAFFI1, Harry PRAMUDITO2, Sofyan RACHMAN2

PROCEEDINGS PIT IAGI YOGYAKARTA 2012 The 41 st IAGI Annual Convention and Exhibition

Evaluation of Deposition Pattern of Wonogiri Reservoir Sedimentation

Experimental Study of the Sediment Trap Effect of Steel Grid-Type Sabo Dams

CASE STUDY BINGA, PHILIPPINES

GEOMORPHIC CHANGES OF A LANDSLIDE DAM BY OVERTOPPING EROSION

Transcription:

CONCEPT ON SUSTAINABLE SAND MINING MANAGEMENT IN MERAPI AREA Jazaul IKHSAN 1, Masaharu FUJITA 2, Hiroshi TAKEBAYASHI 3 and Muhammad SULAIMAN 4 1 Member of JSCE, Graduate Student, Dept. of Civil and Earth Resc. Eng., Kyoto University 2 Member of JSCE, Professor, Disaster Prevention Research Institute, Kyoto University 3 Member of JSCE, Associate Professor, Disaster Prevention Research Institute, Kyoto University (Shimomisu, Yoko-oji, Fushimi, Kyoto 612-8235, Japan) 4 Dept. of Civil and Env. Eng., Gadjah Mada University (Jl. Yacaranda No.1, Sekip Unit IV, Yogyakarta, Indonesia) Mt. Merapi is one of the most active volcanoes in the world and located at 3 km north-northeast from Yogyakarta, Indonesia. A large amount of sediment supply from Mt. Merapi area is serious threat to people, but works also as an important natural resource for people. Thus, the sediment from the volcano has given both advantages and disadvantages. Sustainable sediment management is urgently required to mitigate the sediment disasters and provide the people with benefits. It is considered that sand mining activity and installation of groundsills can be used as one of the tools to control the sediment disasters and the regional development. In this study, we discussed the basic management concepts of sand mining and groundsill installation for such sustainable sediment management. Key Words : sustainable sediment management, sand mining, groundsill, Mt. Merapi, bed deformation analysis 1. INTRODUCTION Mt. Merapi is one of the most active volcanoes in the world 1). It is located at the vicinity of Yogyakarta city in central Java Island, Indonesia. Fig. 1 shows the location of Mt. Merapi. Mt. Merapi has been giving various volcanic activities, such as eruptions, lava flows, pyroclastic flows, glowing clouds, volcanic ash falls and volcanic debris flows. The produced sediment has been causing many disasters for local residents. Particularly, pyroclastic flows due to collapse of lava dome or lava tip result in disasters and a tremendous amount of volcanic loose deposits on the its slope. Pyroclastic flows have run down during the last s 2), 1), and occurred most on southwest slope from 1961 to 1997. The total number of debris flows recorded from 1931 to 1996 was more than 5 times. The locations of sediment deposits are shown in Fig. 1. Sediment in Mt. Merapi has good quality and is popular as construction material. The sand mining activities have given some advantages for rural/local people and local governments. Total number of mining workers in Mt. Merapi area amounts to about 21, man/day. The local government of Magelang Regency obtained benefit from the sand mining activities and the regency income is Rp. PROGO PROGO PROGO PROGO PROGO R. R. R. R. R. PROGO PROGO PROGO PROGO R. R. R. R. Magelang Pabelan R. Pabelan R. Muntilan Blongkeng Blongkeng Blongkeng R. R. R. Blongkeng Blongkeng Blongkeng Blongkeng Blongkeng Blongkeng R. R. R. R. R. R. Putih R. Putih R. Batang R. Batang Batang Batang Batang Batang Batang Batang BatangR. R. R. R. R. R. R. R. Sleman Krasak Krasak Krasak Krasak Krasak Krasak Krasak Krasak Krasak R. R. R. R. R. R. R. R. R. Yogyakarta 1 2 3 11 O 2 E Kaliurang Kaliurang Kaliurang Code R. 2 2 2 2 2 2 2 2 m m 2 m Kaliurang Kaliurang Kaliurang Kaliurang Kaliurang Kaliurang Boyong R. Mt.Merbabu N Mt.Merapi 7 O 3 S Boyolali Gandul R. Woro Woro Woro Woro Woro Woro Woro R. R. R. R. R. R. R. Teleng R. Klaten Fig.1 Location of sediment deposits in Mt. Merapi. (1: Summit lava dome and andesitic lava flow, 2: volcanislastic deposits from Merapi volcano, 3: main cities. 6), 7) Blue line : Progo River. Inside of the red line is volcanic active basin. Outside of the red line is non volcanic basin) 2,218,, (from fiscal 1998) 5). Hence, ban of sand mining damages the economic condition of both Opak Opak Opak Opak Opak Opak Opak Opak Opak R. R. R. R. R. R. R. R. R. Kuning R. 1 1 1 1 1 1 1 1 1 m m m m m m m m m Gendol Gendol Gendol Gendol Gendol Gendol Gendol Gendol Gendol R. R. R. R. R. R. R. R. R. Woro Woro R. R. Java 5 km 11 O 3 E Java Java Gandul R. Gandul R. Teleng R. Merapi Yogyakarta 2km 7 O 45 S

local people and local governments. However, uncontrolled sand mining has caused problems in the watershed such as instability of groundsills, bridges and so on due to bed degradation. Especially in the lower reach of the Progo River, since 197, bed degradations are observed at 1-3 cm/year. Aquatic and riparian habitats are also destructed due to natural and artificial armoring. If the sand mining can be controlled, it can be one of measures to prevent sediment disaster and contribute to the rural economy. In this paper, the basic concepts of such sustainable sediment management assisted by sand mining and sabo works are discussed. 2. SEDIMENT BALANCE The current sediment balance in Mt. Merapi is influenced by sediment production, sediment mining and sediment discharge to sea as shown in Fig. 2. (1) Sediment production Fig. 3 shows the sediment production from lava production (volcanic active basin) and land surrounding Merapi area (non-volcanic basin). Both locations are shown in Fig.1. The lava production data from 189 to 1992 has been compiled by Siswowidjoyo et al 8) and it is varied widely from less than 1 6 m 3 to more than 2 x 1 6 m 3. The cumulative volume is proportionally increased and the annual average lava production rate estimated base on the the cumulative volume of lava is around 1.2 x 1 6 m 3 /year. The sediment production from non-volcanic basin is estimated at 2% of the sediment production from volcanic active basin 2) (=.24 x 1 6 m 3 /year). Thus, the total annual average sediment production rate, Q spm, is equal to 1.44 x 1 6 m 3 /year. The assumed sediment discharge into the Progo river is equal to Q spm (=1.44 x 1 6 m 3 /year). (2) Sand mining volume The sand mining volume in the upper area in 2 was estimated at 5-6 x 1 6 m 3 /year 1). Sand mining is also performed in the lower reach area, especially in the Progo River. The mining rate in the lower Progo River is estimated at about 1.7 x 1 6 m 3 /year 4). (3) Sediment outflow to sea and future condition According to DGWR report, the hydrological and topographical conditions in the lower Progo River are as follows. The annual average discharge is 83.1 m 3 /s. The mean diameter of bed material is 1 mm, the average river width is 2 m, and the average bed slope is.15. Under this condition, the sediment discharge in the lower Progo River, Q s1, is estimated CUMULATIVE VOLUME (x1 6 m 3 ) Mt. Merapi 15 1 5 Average lava production 1.2x1 6 m 3 /year Sand mining 5~6x1 6 m 3 /year (2) Sediment from Non volcanic basin.24x1 6 m 3 /year d 5 = 14 mm I =.17 (21) Upper area Sand mining 1.7x1 6 m 3 /year (1999) Sediment discharge to sea 1.46x1 6 m 3 /year (Calculated) d 5 = 1 mm I =.15 (21) Lower-middle area Fig.2 Sediment balance in Mt. Merapi area Annual average lava production 1.2x1 6 m 3 /year Annual sediment production in non volcanic basin.24x1 6 m 3 /year 19 195 1992 YEAR Fig.3 Cumulative volume of the lava productions in Mt. Merapi and the sediment production in non volcanic basin. at 1.46 x 1 6 m 3 /year using Ashida and Michiue s bed load transport formula 3). This result shows that the annual average sediment discharge is almost equal to the annual average sediment production rate. Therefore, the sediment discharge to sea balances with the sediment production rate. However, actually total sand mining in the foot hill area and the lower Progo River are 6.7~7.7 x 1 6 m 3 /year. Thus, the bed degradation has occurred in the lower Progo River. If sand mining activities in the upper reach is not suppressed, sediment does not supplied to the lower reach for a long term. Under this condition, the slope decreased from.15 until the static equilibrium slope of sediment transport (=.156). 3. CONCEPTS OF SUSTAINABLE SAND MINING MANAGEMENT (1) Sand mining management concept In this chapter, the allowable sand mining volume, Q sa, is determined under equilibrium sediment transport conditions. Fig. 4 shows the prosedure to calculate Q sa. First, the designed bed slope, i bd, is decided. To determine i bd, it depends on how deep the riverbed degradation took place and how much

the sand mining volume will be taken. Next, the allowable degradation depth (height of groundsills) is decided by based on the available budget. In consequence of these steps, the number of groundsills and the longitudinal distance between groundsills are obtained. In the 3rd step, sediment discharge to sea, Q s1, is calculated for the designed bed slope. In this paper, Ashida-Michiue s equation is used to calculate Q s1. Finally, Q sa, is equal to Q spm -Q s1. For example, i bd =.1, Q s1, is.82 x 1 6 m 3 /year. Thus, under this condition, the allowable sand mining volume is.62 x 1 6 (=1.44 x 1 6 -.82 x 1 6 ) m 3 /year. Relation between i bd and Q sa is shown in Fig. 5. The maximum allowable sand mining volume is 1.44 x 1 6 m 3 /year. (2). The sedimet hazard By the controlled sand mining activity, an extra empty of capacity in the sediment reservoirs is useful to contribute the rural economy and control the river bed elevation in lower reach. However, the sediment supply rate, Q supply, from the Mt. Merapi changes very much. Thus, it is very important to determine the allowable sediment supply to the lower Progo River, Q s2, for each i bd to prevent sediment hazard. Here, it is assumed that Q s2 is defined as sediment supply rate that causes i bd to return to the original bed slope (i b =.15). Q s2 is equal to Q spm + Q sa. For example, if the designed bed slope is.1, Q s2, is 2.6 x 1 6 (=1.44 x 1 6 +.62 x 1 6 ) m 3 /year. Relation between i bd and Q s2 is shown in Fig. 6. If Q supply is less than or equal to Q s2, series of groundsill is never buried with sediment. But if Q supply is much bigger than Q s2, it will cause bed aggradation and groundsills are buried after a long time. For example, if a huge eruption occurs with the sediment production rate of 25. x 1 6 m 3 /year like 193, it is predicted that the bed slope changes from i bd to the equilibrium bed slope with 25. x 1 6 m 3 /year (=.15). If the bed increases rapidly, it can cause some serius problems in the lower reach such as ineffectively of irrigation intake function 9). Considering the actual situation of the volcanic activities in Mt. Merapi, a buffer zone such as a sand pocket is strongly required. 4. SUSTAINABLE SAND MINING COMBINED WITH SABO WORKS Sand mining management concept is discussed in Chapter 3. However, the concept is established under equilibrium sediment transport condition. In this chapter, one dimensional bed deformation analysis is performed for the lower reach of the Progo River and two management concepts on the sand mining and Fig.4 Flowchart to determine the allowable sand mining volume, Q sa Qsa (x 1 6 m 3 /year) Qs2 (x 1 6 m 3 /year) The designed bed slope (i bd ) The allowable degradation depth 1.6 1.4 1.2 1.8.6.4.2 3.5 3 2.5 2 1.5 1.5 Average sediment supply rate.5.1.15.2 i bd Fig.5 Relation between the allowable sand mining volume, Q sa, and the designed bed slope, i bd Average.5.1.15.2 i bd sediment supply Fig.6 Relation between the allowable sediment supply, Q s2, and the designed bed slope, i bd the groundsill installation are discussed. (1) Simulation Model The basic equations of a simulation model of one dimensional bed deformation analysis are shown as follows. The used model is the standard well-used one dimensional bed deformation model. Mass and momentum equations of water are as follows. A Q + = (1) t x 2 Q Q z + = e + t x A x x The allowable sand mining volume (Q sa ) The sediment discharge to sea (Q s1 ) ga gai A ( σ ) (2) where, t is the time, x is the coordinate along the longitudinal direction, A is the cross-section area of water, Q is the water discharge in main channel, g is the gravity, ρis the water density, z is the water surface elevation, I e is the energy slope and σ xx is the turbulence stress. Ashida and Michiue s xx

formula 3) is used for the estimation of sediment transport rate. Equation of continuity of sediment discharge is: zb 1 Qb Bw + = t 1 λ x (3) where, B w is the channel width, λis the porosity of bed material, z b is the riverbed elevation. Case 1 Cases 2 i b =.15 After 2 years (2) Hydraulic conditions The simulation is carried out using the averaged geometric and hydraulic characteristic values of the lower reach of the Progo River. These data are the same as the data used in Section 2 (3). The calculation length is 3 km. Normal water depth is used for the downstream boundary conditions. Calculations are performed under 6 conditions. The initial longitudinal bed geometry is drawn in Fig. 7. In Case 1, initial bed lope is.15 and 3 groundsills are installed on the original bed. The height of each groundsill is 2.7m and the longitudinal interval between groundsills is 9km. Under this groundsill install condition, the designed bed slope becomes.12. Supplied sediment discharge is the equilibrium sediment transport rate with the slope.12 (=.338m 3 /s). Hence,.119m 3 /s (=.457m 3 /s -.338m 3 /s) can be used as sand mining. In Case 2, the hydraulic condition is the same as that in Case 1 except for the installation level of groundsills. The crest of groundsills has the same level as the bed surface. When the bed has been degradated because of sand mining and so on, groundsills will be installed as Case 1 to increase the bed surface. When the initial bed level should be kept, groundsills will be installed as Case 2. Cases 3 and 4 will be used for the discussion on the installation order of groundsills. Only is installed as an initial condition in Case 3 and the and the are installed after and 2 years, respectively. The other hydraulic condition is the same as that in Case 1. Only is installed as an initial condition in Case 4 and the and the 1st groundsill are installed after and 2 years, respectively. The other hydraulic condition is the same as that in Case 1. Bed variation characteristics under large sediment supply conditions are discussed using Cases 5 and 6. The initial bed slope between groundsills is.12. In Case 5, the supplied sediment discharge during the first year is the same as the sediment discharge in the 193 s huge eruption (=.79m 3 /s). Supplied sediment discharge in the following 4 years is the equilibrium sediment transport rate with the slope.12. In Case 6, the supplied sediment discharge during the first year is Cases 3 Cases 4 After 2 years Cases 5 & 6 After After i b =.12 Fig.7 longitudinal bed geometry the two times as the equilibrium sediment transport rate with the slope.15 (=.463m 3 /s x 2). Supplied sediment discharge in the following 4 years is the equilibrium sediment transport rate with the slope.12. (3) Results and Discussion Fig. 8 (a) shows the temporal change of bed geometry in Case 1. The bed deformation between groundsills is very fast and bed slope becomes mild with time. Bed level at 18km from the downstream end decreases with time in the first year and increases in the following years. Fig. 9 (a) shows the temporal change of the sediment transport rate between the and the in Case 1. The figure indicates that the bed at 18km is degradeted until 8 months, because the sediment transport rate at 18km is more than sediment transport rate at 19km. These results indicate that the bed deformation between groundsills in the first year is the adjustment process of bed geometry to the local flow condition. On the other hand, after 8 months, sediment deposition takes place at 18km due to the effect of the upstream sediment supply conditions. The sediment transport rate at 1km is still smaller than the equilibrium sediment transport rate with the bed slope.12 (=.338m 3 /s) at 5 years. Hence, approaching to the equilibrium state takes very long time under this condition. Fig. 8 (b) shows the temporal change of bed geometry in Case 2. The bed degradation in the downstream of is invisible after 1 year. This result indicate that the effect of small sediment supply condition (=.338m 3 /s) propagates to downstream very slowly. Here, let me try to use the very slow propagation velocity to decide the installation order of groundsills. In Case 2, the 3 groundsills are installed at a time as the

Elevation from the datum (m) 6 5 4 3 2 1 5 1 15 2 25 3-1 6 (a) Case 1 1 st installation 2 nd installation 5 1 15 2 25 3 (d) Case 4 Elevation from the datum (m) 5 4 3 2 1 Elevation from the datum (m) 5 1 15 2 25 3 5 1 15 2 25 3-1 6 5 4 3 2 (b) Case 2 Distance from (e) downstream Case 5 end (km) 2 nd installation 1 st installation 1 5 1 15 2 25 3 5 1 15 2 25 3-1 initial condition. However, in order to save budget (including interest for the budget), we had better construct only one groundsill first and the others are constructed at the following appropriate year. Fig. 9 (b) shows the temporal change of the sediment transport rate on 3 groundsills in Case 2. Sediment transport does not decrease on the and the until 2 years and 4 years, respectively. As a result, if installation of crest of groundsill is the same as the bed surface to keep the original bed, not to increase the original bed, installation of the can be done at the 2 years and installation of the is at the 4 years. It is economical that the groundsills are installed from upstream to downstream. Fig. 8 (c) and (d) show the temporal change of bed geometry in Cases 3 and 4. Comparing among Cases 1, 3 and 4, bed degradation at the downstream (c) Case 3 (f) Case 6 Fig.8 Temporal change of bed geometry of groundsills (ex. 18km and so on) is suppressed in Case 3. Hence, the groundsills in Case 3 are the most stable and the depth of the basement under the bed can be shallow. As a result, the construction costs of groundsills can be saved. Fig. 9 (c) shows the temporal change of the sediment transport rate at the downstream end. In order to minimize the impact of groundsill construction on the ecosystem of the downstream of groundsills, the decrease range of sediment discharge should be smaller. From the view point of this, Case 3 has the smaller temporal change of sediment discharge (initial sediment transport is.457m 3 /s). Hence, when groundsills are installed to increase the bed level (the crest of groundsills is higher than the bed surface), it is safe for human being, plants and animals that the groundsills are installed from downstream to upstream.

As discussed using Fig. 6, the sediment discharge with the original bed slope (=.15) can be one of the allowable maximum sediment discharge for sediment disaster prevention. However, as shown in Fig. 3, huge amount of sediment is supplied to rivers when the volcano is erupted. Fig. 8 (e) shows the temporal change of bed geometry in Case 5. Bed elevation from 25km to 3 km becomes very high after and overbanked sediment flood is expected. After, all the groundsills are filled with sediment and the slope becomes larger than.15. Of course, these results depend on the upstream sediment supply condition. However, the data of the upstream of the Progo River is not enough to discuss the propagation characteristics of sediment supply by the volcanic eruption. Hence, the above mentioned sediment supply condition is applied as an example here. Fig. 8 (f) shows the temporal change of bed geometry in Case 6. As shown in Fig. 8 (f), the bed deformation around the groundsills are very small because of the decrease in the sediment discharge peak during the propagation process to downstream. Hence, the allowable maximum discharge is underestimated, when the equilibrium conditions is assumed. As a result, the two times as the equilibrium sediment transport rate with the slope.15 can be flowed without filled with groundsills. 5. CONCLUSION In this study, sediment supply from mountainous area is considered as natural resources, and the basic concepts of sustainable sediment management assisted by sand mining and sabo works are discussed. In fact, sediment mining brings non-negligible economic effects to people and local government in Mt. Merapi area. On the other hand, uncontrolled sand mining forms sever bed degradation and damages to ecosystem in the lower river. Furthermore, the budget for river regulation works is restricted. It is considered that the suggested management concepts can be used for helping to determine the politics on the sand mining and the groundsills and sand pockets installtions. REFERENCES 1) DGWR, Ministry of Settlement and Regional Infrastructure, Republic of Indonesia: Review master plan study on Mt. Merapi, Main Report, 21a. 2) DGWR, Ministry of Settlement and Regional Infrastructure, Rep.of Indonesia: Review master plan study on Mt. Merapi, Supporting Report [B] Volcanic Disaster Mitigation Plan, 21b. 3) Fujita, M., and Sasahara, K.: Debris and flood control system, Lecture note, Master of Management Natural Disaster Program, Post-Graduate Program Gadjah Mada University, Indonesia. 4) Indra Karya : Survey of sediment balance and management in Sediment discharge (m 3 /s) Sediment discharge (m 3 /s) Sediment discharge (m 3 /s).6.5.4.3.2.1.6.5.4.3.2.1.6.5.4.3.2.1 Erosion at 18km i b =.15 i b =.12 18km i b =.15 Deposition at 18km (a) Case 1 i b =.12 19km (on the ) i b =.15 i b =.12 Installation of Case 1 Case 4 (b) Case 2 19km (on the ) 1km (on the ) 1km (on the ) 1km (on the ) Installation of Case 3 1 2 3 4 5 Year (c) Downstream sediment discharge in Cases 1, 3 and 4 Fig.9 Temporal change of sediment transport rate Progo river, Final Report, 1999. (in Indonesian) 5) Karnawati, D., Pramumijoyo, S., and Hendrayana, H.: Geology of Yogyakarta, Java: the dynamic volcanic arc city, IAEG paper number 363, Geological Society of London, 26. 6) Lavigne, F., and Thouret, J.C.: Sediment transportation and deposition by rain triggered lahars at Merapi Volcano, Central Java, Indonesia, Journal of Volcanology and Geothermal Research, vol. 49, pp. 45-69, 22. 7) NAAA: Monitoring of debris flow dangerous of Mt. Merapi, Report, 26.(in Indonesian) 8) Siswowidjoyo, S., Suryo, I., and Yokoyama, I.: Magma eruption rates of Merapi volcano, Central Java, Indonesia, during one century (189-1992), Bulletin Volcanology, Vol.57, pp.111-116, 1995. 9) Sumaryono, A., Churiyah, and Artha, I.G.M: Geomorphological changes of Kali Progo caused by lahar flow from Mt. Merapi, Proceedings of Workshop on Disasters Caused by Floods and Geomorphological Changes and Their Mitigations, pp. 198-22, Yogyakarta, Indonesia, 1996. 1) Voight, B., Constantine, E.K., Siswowidjoyo, S., and Torley, R.: Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768-1998, Journal of Volcanology and Geothermal Research, vol. 1, pp. 69-138, 2. (Received September 3, 28)