Jednadžba idealnog plina i kinetička teorija

Similar documents
Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory

Termodinamika. FIZIKA PSS-GRAD 29. studenog Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion

14 The IDEAL GAS LAW. and KINETIC THEORY Molecular Mass, The Mole, and Avogadro s Number. Atomic Masses

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory

Impuls sile i količina gibanja

Physics 1501 Lecture 35

Temperature, Thermal Expansion and the Gas Laws

Impuls sile i količina gibanja

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law:

Comparison of Solids, Liquids, and Gases

Chapter 15 Thermal Properties of Matter

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

CHEMISTRY Matter and Change. Chapter 13: Gases

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

17-6 The Gas Laws and Absolute Temperature

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container

Chapter 19 Thermal Properties of Matter. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Section Using Gas Laws to Solve Problems

Homework: 13, 14, 18, 20, 24 (p )

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

PhysicsAndMathsTutor.com 1 2 (*) (1)

Importance of Gases Airbags fill with N gas in an accident. Gas is generated by the decomposition of sodium azide, NaN.

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry

Warm Up Questions: 1. Define temperature. 3. Draw and label the table on the board. well as the latent heat of fusion and vaporization.

AP Chemistry Ch 5 Gases

Temperatura i toplina

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

Chapter 13: Temperature, Kinetic Theory and Gas Laws

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Gases and Kinetic Molecular Theory

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

Ch. 19: The Kinetic Theory of Gases

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.


Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Although different gasses may differ widely in their chemical properties, they share many physical properties

Edexcel Chemistry A-level

Chapter 5 The Gaseous State

Chapter 18 Thermal Properties of Matter

B. Characteristics of Gases assume volume and shape of container very compressible mix evenly and completely lower density than liquids and solids

Chapter 12. Temperature and Heat. continued

Properties of gases. Gases. Lecture outline: Chapter 10. Composition: 1. Quantity of gas n mols

Lecture outline: Chapter 10. S. Ensign, gases

HOMEWORK 11-1 (pp )

Gases. Characteristics of Gases. Unlike liquids and solids, gases

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles)

Gases: Their Properties & Behavior. Chapter 09 Slide 1

REVISION: GAS LAWS & MOLE CALCULATIONS 18 JUNE 2013

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Chapter 5 The Gaseous State

Kinetic Theory continued

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Properties of Gases. Gases have four main characteristics compared with solids and liquids:

Gases. A gas. Difference between gas and vapor: Why Study Gases?

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

Gases, Liquids, Solids, and Intermolecular Forces

CHAPTER III: Kinetic Theory of Gases [5%]

Chapter 10: Thermal Physics

Kinetic Theory continued

Gas laws. Relationships between variables in the behaviour of gases

Chemistry. Chapter 17

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1

Chapter 10 Notes: Gases

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases.

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Class XI Chapter 5 States of Matter Chemistry

ATMOS Lecture 3

1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. Use each of the terms below to complete the passage. Each term may be used more than once.

The Gaseous State of Matter

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

Unit 13 Gas Laws. Gases

Chapter 11. Molecular Composition of Gases

Gases and Kinetic Theory


Exercises. Pressure. CHAPTER 5 GASES Assigned Problems

Gases. Petrucci, Harwood and Herring: Chapter 6

Chemical Reactions. Chapter 17

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Thermal Properties of Matter (Microscopic models)

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Exam 1. Remember to refer to the Periodic Table handout that is separate from this exam copy.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Boyle s law states the relationship between the pressure and the volume of a sample of gas.

Ideal Gas & Gas Stoichiometry

AP Chemistry Unit 5 - Gases

Transcription:

Jednadžba idealnog plina i kinetička teorija FIZIKA PSS-GRAD 9. studenog 017.

14.1 Molekulska masa, mol i Avogadrov broj To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass scale has been established. The unit is called the atomic mass unit (symbol u). The reference element is chosen to be the most abundant isotope of carbon, which is called carbon-1. 1 u 1.6605 10 7 kg The atomic mass is given in atomic mass units. For example, a Li atom has a mass of 6.941u.

14.1 Molekulska masa, mol i Avogadrov broj One mole of a substance contains as many particles as there are atoms in 1 grams of the isotope carbon-1. The number of atoms per mole is known as Avogadro s number, NA. N A 6.0 10 3 mol 1 N n NA number of moles number of atoms

14.1 Molekulska masa, mol i Avogadrov broj mparticle N m n mparticle N A Mass per mole The mass per mole (in g/mol) of a substance has the same numerical value as the atomic or molecular mass of the substance (in atomic mass units). For example Hydrogen has an atomic mass of 1.00794 g/mol, while the mass of a single hydrogen atom is 1.00794 u.

14.1 Molekulska masa, mol i Avogadrov broj Example 1 The Hope Diamond and the Rosser Reeves Ruby The Hope diamond (44.5 carats) is almost pure carbon. The Rosser Reeves ruby (138 carats) is primarily aluminum oxide (Al O3). One carat is equivalent to a mass of 0.00 g. Determine (a) the number of carbon atoms in the Hope diamond and (b) the number of AlO3 molecules in the ruby.

14.1 Molekulska masa, mol i Avogadrov broj (a) n 44.5 carats 0.00 g 1 carat 0.741 mol m Mass per mole 1.011 g mol N nn A 0.741 mol 6.0 103 mol 1 4.46 103 atoms (b) n 138 carats 0.00 g 1 carat 0.71 molecules m Mass per mole 101. 96 g mol 6.98 3 15.99 N nn A 0.71 mol 6.0 103 mol 1 1.63 103 atoms

14. Jednadžba stanja idealnog plina An ideal gas is an idealized model for real gases that have sufficiently low densities. The condition of low density means that the molecules are so far apart that they do not interact except during collisions, which are effectively elastic. At constant volume the pressure is proportional to the temperature. P T

14. Jednadžba stanja idealnog plina At constant temperature, the pressure is inversely proportional to the volume. P 1 V The pressure is also proportional to the amount of gas. P n

14. Jednadžba stanja idealnog plina THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles of the gas and is inversely proportional to the volume of the gas. nrt P V PV nrt R 8.31 J mol K

14. Jednadžba stanja idealnog plina n N NA R T NkT PV nrt N NA k R 8.31 J mol K 3 1. 38 10 J K 3 1 N A 6.0 10 mol

14. Jednadžba stanja idealnog plina Example Oxygen in the Lungs In the lungs, the respiratory membrane separates tiny sacs of air (pressure 1.00x105Pa) from the blood in the capillaries. These sacs are called alveoli. The average radius of the alveoli is 0.15 mm, and the air inside contains 14% oxygen. Assuming that the air behaves as an ideal gas at 310K, find the number of oxygen molecules in one of these sacs. PV NkT

14. Jednadžba stanja idealnog plina 1.00 10 Pa 0.15 10 m PV N 1.38 10 J K 310 K kt 5 3 4 3 3 3 1.9 1014 molecules of air Number of molecules of oxygen in one sac 1.9 10 0.14.7 10 14 13 molecules

14. Jednadžba stanja idealnog plina Conceptual Example 3 Beer Bubbles on the Rise Watch the bubbles rise in a glass of beer. If you look carefully, you ll see them grow in size as they move upward, often doubling in volume by the time they reach the surface. Why does the bubble grow as it ascends?

14. Jednadžba stanja idealnog plina Consider a sample of an ideal gas that is taken from an initial to a final state, with the amount of the gas remaining constant. PV nrt PV nr constant T Pf V f Tf PiVi Ti

14. Jednadžba stanja idealnog plina Pf V f Tf Constant T, constant n: Constant P, constant n: PiVi Ti Pf V f PiVi Boyle s law Vf Vi T f Ti Charles law

14.3 Kinetička teorija plinova Čestice se u neprekidnom, nasumičnom gibanju sudaraju jedna s drugom te sa stijenkama posude. U svakom se sudaru brzina čestice mijenja. Kao rezultat toga, čestice (atomi ili molekule) imaju različite brzine.

14.3 Kinetička teorija plinova postotak molekula u intervalu brzina RASPODJELA BRZINA MOLEKULA najvjerojatnija brzina je oko 400 m/s najvjerojatnija brzina je oko 800 m/s brzina molekule, m/s

14.3 Kinetička teorija plinova KINETIČKA TEORIJA Prosječna sila za jednu molekulu: Δ (m v ) Δv F = ma = m = Δt Δt ( +m v ) ( m v ) m v F= = L/ v L

14.3 Kinetička teorija plinova Prosječna sila za jednu molekulu: mv F= L Prosječna sila za N molekula: N mv F= 3 L rms (root-mean-square) brzina v rms = v F F N mv p= = = A 3 L3 L v rms = v volumen

14.3 Kinetička teorija plinova N mv p= 3 V Ek NkT rms mv 1 pv = N ( m v rms ) = N ( 3 3 ) N k T = N Ek 3 3 Ek = k T

14.3 Kinetička teorija plinova Konceptualni primjer 5 Ima li pojedinačna čestica temperaturu? Svaka čestica plina ima kinetičku energiju. Prosječnu kinetičku energiju povezali smo s temperaturom idealnog plina. Možemo li onda zaključiti da i pojedinačna čestica ima temperaturu?

14.3 Kinetička teorija plinova Primjer 6 Brzina molekula u zraku Zrak je smjesa molekula dušika N (molekulske mase 8,0 u) i molekula kisika O (molekulske mase 3,0 u). Uz pretpostavku da se zrak ponaša kao idealni plin, odredite prosječnu (rms) brzinu molekula kisika i dušika, ako je temperatura zraka 93 K. m v rms 3 = kt 3 kt v rms = m

14.3 Kinetička teorija plinova Za dušik, masa jedne (N =1) molekule: m N 1 n= = = M NA NA M 8,0 g/mol 6 m= = = 4,65 10 kg 3 1 NA 6,0 10 mol 3 kt 3 1,38 10 3 J/K 93 K v rms = = = 511 m/s 6 m 4,65 10 kg

14.3 Kinetička teorija plinova UNUTRAŠNJA ENERGIJA JEDNOATOMNOG IDEALNOG PLINA m v rms 3 Ek = = kt R = kna 3 3 U = N E k = N k T = n R T

14.4 Difuzija Proces u kojem se molekule gibaju iz područja više koncentracije u područje niže koncentracije nazivamo difuzijom. NA POČETKU KASNIJE

14.4 Difuzija Konceptualni primjer 7 Zašto je difuzija relativno spora? Molekula plina, na sobnoj temperaturi, ima prosječnu (rms) translacijsku brzinu od nekoliko stotina metara po sekundi. S takvom brzinom molekula bi mogla stići s kraja na kraj sobe u djeliću sekunde. No, obično treba nekoliko sekundi, ili čak minuta, da se miris iz otvorene bočice parfema proširi po sobi. Zašto treba toliko puno vremena?

14.4 Difuzija viša koncentracija C poprečni presjek = A niža koncentracija C1 tok topive tvari poprečni presjek = A viša temperatura T tok topline niža temperatura T

14.4 Difuzija FICKOV ZAKON DIFUZIJE Masa m otopine koja difundira u vremenu t kroz stupac otapala duljine L i poprečnog presjeka A je difuzijska konstanta DAΔC t m L gradijent koncentracije Jedinica SI za difuzijsku konstantu: m/s

ZADACI ZA VJEŽBU 1. Masa od 135 g nekog elementa sadrži 30,1 103 atoma. Koji je to element? RJEŠENJE: aluminij. Valjkasta čaša vode ima polumjer 4,50 cm i visinu 1,0 cm. Gustoća vode je 1,00 g/cm3. Kolika je količina vode u toj čaši? RJEŠENJE: 4,4 mol 3. Da bi se napunio balon potrebno je 0,16 g helija. Koliko bi, za isti balon, trebalo grama dušika (istog tlaka, volumena i temperature)? RJEŠENJE: 1,1 g 4. Na sunčanoj strani Venere atmosferski tlak je 9,0 106 Pa, a temperatura 740 K. Na površini Zemlje tlak je 1,0 105 Pa, a temperatura može doseći 30 K. Ovi podaci pokazuju da Venera ima "deblju" atmosferu tj. da je broj molekula po jediničnom volumenu (N/V) na Veneri veći nego na Zemlji. Koliko je puta veći? RJEŠENJE: 39

ZADACI ZA VJEŽBU 5. Soba je široka 4,0 m, dugačka 5,0 m i visoka,5 m. Zrak u sobi sadrži 79% dušika (N) i 1% kisika (O). Kolika je masa zraka pri temperaturi od oc i tlaku od 1,01 105 Pa? RJEŠENJE: 59 kg 6. Dva mola idealnog plina nalaze se u posudi volumena 8,5 10 3 m3 pri tlaku 4,5 105 Pa. Odredite prosječnu translacijsku kinetičku energiju molekule plina. RJEŠENJE: 4,8 10 1 J 7. Prije početka vožnje tlak u automobilskoj gumi je,81 105 Pa. Vanjska temperatura je 84 K. Nakon vožnje tlak je 3,01 105 Pa. Kolika je temperatura zraka u gumi? Zanemarite rastezanje gume. RJEŠENJE: 304 K

ZADACI ZA VJEŽBU 8. Kisik za bolničke pacijente drži se u posebnom rezervoaru pod tlakom od 65 atmosfera i na temperaturi od 88 K. Rezervoar se nalazi u posebnoj sobi, a kisik se dovodi u pacijentovu sobu pod tlakom od 1,00 atmosfera i na temperaturi od 97 K. Koji volumen u pacijentovoj sobi zauzima kisik koju u rezervoaru zauzima 1,00 m3? RJEŠENJE: 67 m3 9. Tlak sumporovog dioksida (SO) je,1 104 Pa. U 50,0 m3 nalazi se 41 mol toga plina. Odredite prosječnu (rms) translacijsku brzinu molekula SO. RJEŠENJE: 343 m/s 10. Helij se nalazi u posudi volumena 0,010 m3 pod tlakom od 6, 105 Pa. Koliko dugo mora raditi stroj snage 0,5 konjskih snaga (jedna konjska snaga je 746 W) da bi energija koju "proizvede" odgovarala unutrašnjoj energiji spomenutog helija? RJEŠENJE: 50 s

PITANJA ZA PONAVLJANJE 1. Idealni plin. Atomska jedinica mase 3. Količina tvari 4. Avogadrova konstanta 5. Boyle-Mariotteov zakon 6. Charlesov zakon 7. Gay-Lussacov zakon 8. Jednadžba idealnog plina 9. Boltzmannova konstanta 10. Unutrašnja energija PITANJA ZA PONAVLJANJE