The Finite Element Method

Similar documents
Nonlinear Bending of Strait Beams

AS 5850 Finite Element Analysis

NONLINEAR ANALYSIS OF PLATE BENDING

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

Finite element discretization of Laplace and Poisson equations

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

MEEN 618: ENERGY AND VARIATIONAL METHODS

Finite Element Analysis

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

VSMN30 FINITA ELEMENTMETODEN - DUGGA

That is, we start with a general matrix: And end with a simpler matrix:


MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

2008 AP Calculus BC Multiple Choice Exam

Differential Equations

MEEN 617 Handout #12 The FEM in Vibrations A brief introduction to the finite element method for modeling of mechanical structures

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Derivation of Eigenvalue Matrix Equations

Southern Taiwan University

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force

1 Isoparametric Concept

Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method

Hydrogen Atom and One Electron Ions

3 Finite Element Parametric Geometry

Elements of Statistical Thermodynamics

Chapter 3 Lecture 14 Longitudinal stick free static stability and control 3 Topics

16. Electromagnetics and vector elements (draft, under construction)

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Direct Approach for Discrete Systems One-Dimensional Elements

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

Mock Exam 2 Section A

1973 AP Calculus AB: Section I

Response Sensitivity for Nonlinear Beam Column Elements

Least Favorable Distributions to Facilitate the Design of Detection Systems with Sensors at Deterministic Locations

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

An Investigation on the Effect of the Coupled and Uncoupled Formulation on Transient Seepage by the Finite Element Method

An Example file... log.txt

Non-Linear Analysis of Interlaminar Stresses in Composite Beams with Piezoelectric Layers

Higher order derivatives

An adaptive Strategy for the Multi-scale Analysis of Plate and Shell Structures with Elasto-plastic Material Behaviour

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Addition of angular momentum

ME469A Numerical Methods for Fluid Mechanics

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

Keywords- Active vibration control, cantilever composite beam, Newmark-β method

Differentiation of Exponential Functions

San José State University Aerospace Engineering AE 138 Vector-Based Dynamics for Aerospace Applications, Fall 2016

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

A class of wavelet-based Rayleigh-Euler beam element for analyzing rotating shafts

. ffflffluary 7, 1855.

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

Introduction to Finite Element Method. Dr. Aamer Haque

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Available online at ScienceDirect. IFAC PapersOnLine 51-2 (2018)

Integration by Parts

Analysis of Structural Vibration using the Finite Element Method

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

Einstein Equations for Tetrad Fields

682 CHAPTER 11 Columns. Columns with Other Support Conditions

Twist analysis of piezoelectric laminated composite plates

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

1 General boundary conditions in diffusion

Massachusetts Institute of Technology Department of Mechanical Engineering

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

FINITE BEAM ELEMENT WITH PIEZOELECTRIC LAYERS AND FUNCTIONALLY GRADED MATERIAL OF CORE

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

T h e C S E T I P r o j e c t

Theories of Straight Beams

F O R SOCI AL WORK RESE ARCH

Liu, X., Zhang, L. "Structural Theory." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

4.5 The framework element stiffness matrix

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

DIFFERENTIAL EQUATION

ME311 Machine Design

Introduction to Condensed Matter Physics

International Journal of Solids and Structures

Comb Resonator Design (2)

Math 34A. Final Review

Ultimate strength analysis & design of residential slabs on reactive soil

Free Vibration of Pre-Tensioned Electromagnetic Nanobeams

Addition of angular momentum

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

BUCKLING OF A COLUMN WITH TEMPERATURE DEPENDENT MATERIAL PROPERTIES

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Transcription:

Th Finit Elmnt Mthod Eulr-Brnoulli and Timoshnko Bams Rad: Chaptr 5 CONTENTS Eulr-Brnoulli bam thory Govrning Equations Finit lmnt modl Numrical ampls Timoshnko bam thory Govrning Equations Finit lmnt modl Shar locking Numrical ampl

z, w KINEMTICS OF THE LINERIZED EULER-BERNOULLI BEM THEORY q ( ) Strains, displacmnts, and rotations ar small f( ) u z 9 Undformd Bam Dformd Bam dw d dw d Eulr-Brnoulli Bam Thory (EBT) is basd on th assumptions of ()straightnss, ()intnsibility, and ()normality

z z y z Kinmatics of Dformation in th Eulr-Brnoulli Bam Thory (EBT) w u σ y σyy σ zz σ z σ y z σ zy dw d σ z σ y σ z Displacmnt fild (constructd using th hypothsis) u(, z) = u z dw, u =, u = w( ) d Linar strains dw d Notation for strss componnts ε γ σ σ = ε = = z d d z z u du d w, u u dw dw = + = + = d d Constitutiv rlations du = Eε = E Ez d = Gγ = z d w, d.

Eulr-Brnoulli Bam Thory z, w q() F M L Bam cross sction q() z y M + M c f V V cw f q ( ) σ z z σ σ + Δσ σ z Δ f( ) cw f + Δσ q ( ) V V + ΔV N N + ΔN M M + ΔM f( ) cw Δ f Dfinition of strss rsultants N = σ d, M = σ z d, V = σ d. z 4

Eulr-Brnoulli Bam Thory (Continud) Equilibrium quations dn dm dv + f =, V =, + q cfw = d d d Strss rsultants in trms of dflction du d w du N = σ d = E Ez d = E d d d d =, z d =, z d = I du dw dw M = σ z d = E Ez z d = EI d d d dm d d w V = = EI d d d 5

Eulr-Brnoulli Bam Thory (Continud) Govrning quations in trms of th displacmnts d du E f, L d d = < < Bars d d w u EI c, + fw q = < < L d d z, w q() F Bams w M ial dformation of a bar L c f Bnding of a bam ial displacmnt is uncoupld from transvrs displacmnt 6

Wak Form of th EB Bam Thory d d w EI c, + fw q = < < L d d Wak form vi é b d æ dw ö ù h = v EI c w q ò i f h d a d ç + - d ê ë çè ø úû é b dv dw dw i d æ ö ù é h d ù æ h ö = EI c v w v q d v EI ò f i h i i - + - + a d d ç d d ç d êë è ø úû êë è øúû Govrning quation { } st of wight functions Implis that th primary variabl is w (displacmnt) Scondary variabl (shar forc) é b dv d æ d wö ù = EI c vw vq ò d v( ) Q v( ) Q - + - - - a d d ç d çè ø êë úû f a b 7 b a

é b dv dw ù i h = EI c v w v q ò ( ) ( ) + - d v Q v Q a d d - - êë úû b éæ dv ö d w ù i h + EI - ç d çè ø d êë úû Primary Variabl, θ Slop/rotation Wak Form (Continud) f i h i i a i b a Scondary variabl (Bnding Momnt) é b dv dw ù i h = EI c v w v q ò d v ( ) Q v ( ) Q + - a d d - - êë úû æ dv ö æ dv ö i - - Q - ç- Q ç d è ø è ø a f i h i i a i b i 4 ç d é d æ dw ù é h d dw ù ö æ h ö Q = EI V ( ), Q EI V ( ) h a h b d d =- = - d d = ê ç ç ë è øúû êë è øúû a b æ dw ö æ dw ö Q EI M ( ), Q EI M ( ) h h = =- = - h a 4 = h b ç d è ø çè d ø a b b 8

Bam Elmnt Dgrs of Frdom Gnralizd displacmnts Δ=w ( a ) Δ=w ( b ) Δ=θ ( a ) h Δ=θ 4 ( b ) Gnralizd forcs Q = V( a ) Q = V( b ) Q = M( a ) h Q4 = M( b ) 9

FINITE ELEMENT PPROXIMTION: Som Rmarks Continuity rquirmnt basd on th wak form, which rquirs that th scond drivativ of w ists and squar-intgrabl. Continuity basd on th primary variabls, which rquirs carrying w and its first drivativ as th nodal variabls, rquirs cubic approimation w. Post-computation of scondary variabls (bnding momnt and shar forc) rquirs th third drivativ of w to ist. Bams

FINITE ELEMENT PPROXIMTION Primary variabls (srv as th nodal variabls that must b continuous across lmnts) dw w, θ = d w ( )» c + c+ c + c Hrmit cubic polynomials w, q w φ a a = + w( )» c + c + c + c º Δ a a a a» + + + º Δ b b b b»- - - º Δ a a a»- - - º Δ b b b 4 w ( ) c c c c q( ) c c c q( ) c c c φ = ( a ) h a h h φ a a = h h φ a 4 = ( a ) a h h 4» + + + = ådj j= w ( ) c c c c f ( ) j

HERMITE CUBIC INTERPOLTION FUNCTIONS f i ( ) f ( ) slop = f ( ) h slop = slop = h f ( slop = f ( 4 slop = h slop = h

FINITE ELEMENT MODEL K ij = b a 4 w ( )» å Δ f ( ) j j j= 4 Kij j Fi = or [K ]{ } = {F } j= K K K K4 K K K K4 K K K K4 K4 K4 K4 K44 EI d φ d φ i j d d + c f φ i φ j 4 = q q q q 4 + Q Q Q Q 4 b d Fi = φ i qd+ Q i a w Δ w Δ Q, q Q, q θ Δ θ Δ 4 θ Δ Q, q Q 4, q 4 h h

For lmnt-wis constant valus of E I and q :(and c f = ): [K ]= E I h Postprocssing Finit Elmnt Modl (Continud) 6 h 6 h h h h h 6 h 6 h h h h h {F } = q h 6 h 6 + h Q Q Q Q 4 M() = EI d w 4 d = EI j= V () = dm d = d EI d w d d σ (, z) = M()z I j d φ j d = EI = Ez d w 4 d = Ez j= j 4 j= j d φ j d d φ j () d 4

EI h SSEMBLY OF TWO BEM ELEMENTS connctd nd-to-nd 6 h 6 h h h h h 6 h 6+6 h h 6 h h h h h h +h h h 6 h 6 h h h h h Q L Q Q + Q = q L 4 + 48 Q 4 + Q Q L Q 4 U U U U 4 U 5 U 6 h= L/ Q + Q =, Q 4 + Q = Q, q Q, q Q 4, q 4 Q, q Q, q Q, q Q, q Q 4, q 4 5

E, EI SIMPLE EXMPLE - L P Eact solution (according to th Eulr-Brnoulli bam thory) PL wl ( ) = EI Givn problm E, EI L U U U, U4, Boundary conditions: U = U =, Q = P, Q = 4 P On lmnt discrtization [ K ]{ D } = { q } + { Q } {F } = q h [K ]= E I h 6 h 6 h + h Q Q Q Q 4 = L 6 h 6 h h h h h 6 h 6 h h h h h 6

U SIMPLE EXMPLE (continud) P 6EI L éei 6EI ù ê ú ì U ü ìpü ï ï ï ï 4EI Solution using Cramr s rul L L ï ï ï ï L ( 4PEI / L) PL í ý= í ý U = = = 4 6EI 4EI EI 6EI é( EI ) / L ù EI ê ú ïu 4ï ê ë ú ï ï û ë L L ûïî ïþ î þ L L 6EI 4EI EI L L P L 6EI L -( 6PEI / L ) PL = = =- EI 6EI é( EI ) / L ù ê EI ë úû L L 6EI 4EI L L 4 4 E, EI U wl ( ) = U PL EI PL EI =- dw d = L 4 L 7

EXMPLE : dtrminat fram structur Givn structur a b F B C P a b F B C P Finit lmnt discrtization P Pb B F F P Pb P C B F 8

EXMPLE (continud) Bar lmnt, B E é -ùì u ü ì Q ü ú ï ï= ï ï a ê í ý í ý ë- úï ûïîu Bïþ ïîq Bïþ Pa u =, QB =-P ub =- E Bam lmnt, B é 6 -a -6 -aùìïw üï ì Q ü ú EI úï ï - ú ï ï ï ï a í ý= í ý 6 a 6 a úï Q - ú ê úï ï ë- ûïïî ïþ ï ïþ w = = Q =- F Q = Pb a B Pb ï ï a a a a ïq ï Q B wb B a a a a qb îq B B, q,, F P Displacmnts at C rlativ to point B P Bar lmnt, BC Pb Bam lmnt, BC u F B C C P F Fb = E é 6 -b -6 -bùìïw üï ì Q ü ú EI úï ï - ú ï ï ï ï b í ý= í ý 6 b 6 b úï Q - ú ê úï ï ë- ûïïî ïþ ï ïþ w = = Q =- P Q = B B ï Bï B b b b b ïqb ï Q C wc C b b b b qc îq C C, qb,, 9

EXMPLE : Handling of a vrtical spring z, w q k kw(l ) kw(l ) L k U Q Q U = U = kw( L) Q Q 4 = U 4 ¹ = ku Q =- kw( L) =-ku ltrnativly, é ì s ùï ü ì s - ü ï u ï ï Q í ý= í ï s s s k ú ý, u =, u = U Q = ku ê - úï ï s s u Q ë ûïî ïþ ïî ïþ

SOLUTION TO THE SPRING-SUPPORTED BEM é 6 -L -6 -LùìïU = w üï ïì 6 ïü ìïq üï ú ï EI L L L L úï U = q ql L Q - ú ï ï ï- ï ï ï L í ý= í ý+ í ý 6 L 6 L úïu w 6 Q - ú = ê ï -L L L L úï ïu4 = q ï ï L ï ïq 4ï ë ûïî ïþ î þ ïî ïþ Boundary conditions w =, q =, Q =- ku, Q = 4 Condnsd quations for th unknown gnralizd nodal displacmnts éei 6EI ù + k ì U ü ì 6 ü L L ú ql úí ï ï ý= ï í ï ý 6EI 4EI ú úï U 4 -L êë L L úû ïî ïþ ïî ïþ -ku Bams

HNDLING OF POINT SOURCES INSIDE N ELEMENT h q = ò q () s f () s ds i i h i ò i i q = q( s) f( s) ds = F f( s ), i =,,,4 q h f = ò q () s f () s ds i =- M d, i i i ds s= s æsö æsö æ sö f() s = - ç +, f() s =-s - èhø èç h ø çè h ø æsö æsö éæsö sù f() s = ç -, f4() s =-s - èhø èç h ø êçèhø hú ë û =,,, 4 F F for F placd q = F q = at s =.5h Fh Fh q =- q = 8 4 8 s F s h qs () = Fd( s-s) s M s h qs () = Md '( s-s)

EXMPLE 4: simply-supportd bam (a) Find th cntr dflction using on Eulr-Brnoulli lmnt in full bam é 6 -L -6 -Lù ì U = w ü ì q ü ì Q ü ú ï 8 EI -L L L L úïu = q q Q ú ï ï = ï ï + ï ï L í ý í ý í ý -6 L 6 L úïu = w q Q ú ê ï -L L L L úï ïu4 = q ï ïq 4ï ïq 4ï EI él L ùìu ü FLì ü ú ï ï = ï ï L ê í ý í ý ë L L úï ûïîu 4ïþ 8 ïî- ïþ U FL FL 6EI 6EI =, U4 =- FL ë ûî þ î þ î þ FL Condnsd quations - 8 F L F F q = q = q FL = 8 q 4 FL = w ( ) = Uf( ) + Uf ( ) + Uf ( ) + Uf ( ) 4 4 = U f ( ) + U f ( ) 4 4 ìé æ ö ù éæ ö æ öù ï FL ü = ï í - - + - ï ý 6EI ç L ç L ç L è ø è ø è ø ïîê ë úû êë úû ïþ FL æ L Lö FL w( 5. L) = ç - - =- 6EI çè 8 8 ø 64EI 8

EXMPLE 4: simply-supportd bam (b) Find th cntr dflction using on Eulr-Brnoulli lmnt in half bam 6 é 6 -. 5L -6 -. 5Lù ìïu = w üï ìïq üï ú EI ï -5. L 5. L 5. L 5. L úïu = q Q ú ï ï = ï ï L í ý í ý 6. 5L 6. 5L úïu w Q - ú = ê L. 5L. 5L. 5L úï ï U4 = q - ï ï ïq 4ï ë ûî þ î þ Condnsd quations 6EI L U U é 5. L 5. LùìU ü ì ü ú ï ï = 5. F ï ï ê í ý í ý ë5. L 6 û úï ïîu ïþ ïî- ïþ FL 4. 5L FL, EI L 6EI FL 4. 5L FL EI L 48EI = = = = -.5F U Q = =, F F U Q 4 L =, =-.5F

EXERCISE PROBLEM Problm: Dvlop wak form and th finit lmnt modl of th following quation, whr w and P ar unknowns: d d w d w EI P, L + = < < d d d Bams 5

F EXERCISE PROBLEM d Problm: Us th minimum numbr of EBT lmnts to find th comprssion in th spring, ractions at th fid support, and spring forc. q Rigid loading fram EI h EI h Linar lastic spring, k Bams 6

TIMOSHENKO BEM THEORY and its Finit Elmnt Modl Govrning Equations Finit lmnt modl Shar locking Numrical ampl Bams 7

Kinmatics of Timoshnko Bam Thory z, w q ( ) f( ) z, u Undformd Bam Dformd Bams dw d 9 dw d Eulr-Brnoulli Bam Thory (EBT) Straightnss, intnsibility, and normality u φ dw d Timoshnko Bam Thory (TBT) Straightnss and intnsibility 8

Timoshnko Bam Thory f g Kinmatic Rlations u (, z) = u( ) + zf ( ), u =, u (, z) = w( ) z u du df z d d = = + u u dw d = + = f +, z z w u dw d zf Constitutiv Equations s ædu df ö = E = E ç + z çèd d ø æ dwö sz = Ggz = Gç f + çè d ø 9

Timoshnko Bam Thory (Continud) dn dv dm Equilibrium Equations + f =, q+ cfw =, + V =. d d d Bam Constitutiv Equations ædu df ö du N = s d E ò = ò + z d= E ç èd d ø d ædu dfö df M = sz d E ò = ò ç + z zd= EI çèd d ø d æ dwö æ dwö V = Ks sz d GK s f d GK s f ò = + = + ç è d øò èç d ø Govrning Equations in trms of th displacmnts d é æ dwö ù - GK s f + + cfw = q d ê ç d ú ë çè øû () d æ df ö æ dwö - EI + GK s f + = d ç è d ø èç d ø ()

Wak Form of Eq. () WEK FORMS OF TBT ì b d é æ dwöù ü = v ï GK s f cfw qï ò í- + + - ýd a d ê ç d ú ï î ë è øû ïþ ì b dv é æ dwöù ü é æ dwöù = ï GK s f cfvw vqïd v GK s f ò í + + - ý - + a d ê ç d ú ê ç d ú ï î ë è øû ïþ ë è øû ì b dv é æ dwö ù ü = GK s ç f + ò í ï ú+ cvw a d çè d f -vq ý ïd ê øú ï î ë û ïþ é æ dwöù é æ dwöù -v( a) - GK s f+ -v( b) GK s f+ ê ç d ú ê ç d ú ë è øû è ø ë û a b ì dv æ dwö ü = ïgk f c v w v qï ò í + + - d -v ( ) Q -v ( ) Q a d çè d ïî ø ïþ s f ý a b b b a

Wak Forms of TBT (continud) Wak Form of Eq. () b é d æ df ö æ dwöù = v EI GK s f ò - + + d ê a d ç d ç d ú ë è ø è øû b b édv æ dfö æ dwöù é dfù = EI GKsv f ò + + d - v EI ê a d ç d ç d ú ë è ø è øû êë d úû a b édv æ df ö æ dwöù EI GKsv f æ dfö æ dfö = + + òa d çè d ø çè d ø d -v ( a) -EI -v( b) EI ê ú ç ë d ç d û è ø è ø a b édv æ df ö æ dwöù = EI GKsv f ò + + d -v( a) Q -v( b) Q4 ê a d çè d ø çè d øú ë û Total Potntial Enrgy b EI dφ GKs dw c f Π ( w, φ ) = + φ + + w d a d d b wq d + w( ) Q + w( ) Q + φ( ) Q + φ( ) Q a a b a b 4 b

FINITE ELEMENT MODELS OF TIMOSHENKO BEMS Finit Elmnt pproimation w w s s h w h m= n= h w w s s s m= n= h m å w» w y ( ), f» S j ( ) j j j j j= j= { } { } é ù ì ü ék ù ék ù { w} F ê ú ê ú ì ü ë û ë û ï ï í ï ý ï= í ý é { S} K ù ék ù ï ï F êêë úû êë úûúî þ ï ï ë û î þ n å æ dy dy ö ç d K GK c y d, K GK d K a ç çè d d ø a d b b i j i ij = ò ç s + f yy i j ij = s jj = ji ò é b b dj dj ù i j dy j Kij = EI GKsjj ò + i j d, Kij GKs ji d a d d = ò ê ú a d ë û b i = ò yi + yi ( a) + yi ( b) i = ji( a) + ji ( b) Q4 F q d Q Q, F Q a

Shar Locking in Timoshnko Bams () Thick bam princs shar dformation, () Shar dformation is ngligibl in thin bams, Linar intrpolation of both w, f : f ¹- w()» w () + w () ()» S () + S () y y, f y y dw d dw f =- d jyj f å jyj j= j= å w» w ( ),» S ( ) w w h S S h Thus, in th thin bam limit it is not possibl for th lmnt to raliz th rquirmnt f =- dw d 4

SHER LOCKING - REMEDY In th thin bam limit, φ should bcom constant so that it matchs dw/d. Howvr, if φ is a constant thn th bnding nrgy bcoms zro. If w can mimic th two stats (constant and linar) in th formulation, w can ovrcom th problm. Numrical intgration of th cofficints allows us to valuat both φ and dφ/d as constants. Th trms highlightd should b valuatd using rducd intgration. () () æ b dy dy ö i j () () Kij = GKs cf yi y ò + j d a ç d d çè ø () b dyi () ij = ò s y j = ji K GK d K a d () () é b dy dy ù i j () () Kij = EI GKsyi y ò + j d a d d êë úû 5

STIFFNESS MTRICES OF TIMOSHENKO BEM ELEMENT (for constant EI and G) Rducd intgration linar lmnt (RIE) Linar approimation of both w and é 6 h 6 h ùì w ü ì q ü ì Q ü f - - - ú EI h h h hz úï ï f q Q - ú ï ï ï ï ï ï m 6 h 6 h í ý= í ý+ í ý - h úï w q Q ú ï -h hz h h úï ïf q êë úï ûî ïþ ïî 4 ïþ ïîq ï 4ïþ EI = 5. + 6L, z = 5. -6L, L =, m = L GKh s Consistnt intrlmnt lmnt (CIE) Hrmit cubic approimation of w and dpndnt quadratic approimation of f é 6 -h -6 -h ùì w ü ì q ü ì Q ü ú EI h h h h úï ï f q Q - S Q ú ï í ï ý= ï í ï ý+ ï í ï m 6 h 6 h h ý - úï w q Q ú ï -h hq h hs úï ïf q êë úï ûî ïþ ïî 4ïþ ïî Q ï 4ïþ EI S =. + L, Q =. -6L, L =, m = + L GKh s Bams 6

E, EI L U U U, U4, F Eact solution (according to th E-B bam thory) wl ( ) = FL EI On lmnt discrtization using th RIE lmnt é 6 -h -6 -h ùì w ü ì q ü ì Q ü EI -h h h hz f q Q ú ï ï ï ï ï ï m 6 h 6 h í ý= í ý+ í ý h úï w q Q - ú ï ê-h hz h h úï ïf ï q 4 Q ë úî û þ ïî ïþ ïî 4þï EI = 5. + 6L, z = 5. -6L, L =, m = L GKh Boundary conditions: N EXMPLE of TBT s U = U =, Q = F, Q = 4 7

N EXMPLE (TBT) (continud) EI é 6 LùìïU üï ìïfïü m L FL L FL (. + L) 5 6 ú ï ï= ï ï U = = ml ê í ý í ý L L úïu ï ï 4 ï EI 6L 9L 6EI( L) ë ûïî ïþ ïî ïþ ( - ) Whn EI 5. FL FL L= = U = = GKsL 6EI 4EI ( too stiff ) FL (. 5+ 6L) FL Whn L¹, thn U = = (. 75+ L) 6EI EI L= EI ( + n ) H ( + ) H. H H = = n æ ö æ ö 6. æ ö = = GKL LK 6K ç èl ø 5 çèl ø çèl ø s s s 8

N EXMPLE of TBT On lmnt discrtization using th CIE lmnt é 6 -L -6 -Lùì w ü ì Q ü ú EI L L L L úï ï f Q - S Q ú ï ï ï ï ml í ý= í ý 6 L 6 L úïw Q - ú ï ê L L L L úïf Q ë- Q Súï ûî ï ïþ ïî 4 ïþ EI S =. + L, Q =. -6L, L =, m = + L GKL Condnsd quations for th unknown displacmnts s EI é 6 L ù ìu ü ì Fü ml FL S mfl S ú ï ï= ï ï U = = ml ê í ý í ý ël SL úï ûïîu 4ïþ îï þï EI ( LS-9 L ) EI( S-9) 9

N EXMPLE (TBT) (continud) mfl S FL Whn L= S= and m = ; thn U = = EI( S-9) EI mfl S FL ( + L )( + L) FL Whn L¹, U = = = ( + L) EI( S- 9) EI ( + L) EI ( n) ( n). EI + H + æh ö æh ö æh ö L= = = 6. = = GK L L K 6K ç èl ø 5 çèl ø èçl ø s s s 4

SUMMRY In this lctur w hav covrd th following topics: Drivd th govrning quations of th Eulr-Brnoulli bam thory Drivd th govrning quations of th Timoshnko bam thory Dvlopd Wak forms of EBT and TBT Dvlopd Finit lmnt modls of EBT and TBT Discussd shar locking in Timoshnko bam finit lmnt Discussd assmbly of bam lmnts Discussd ampls 4