QMC dissociation energy of the water dimer: Time step errors and backflow calculations

Similar documents
QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters

Quantum Monte Carlo backflow calculations of benzene dimers

Orbital-dependent backflow transformations in quantum Monte Carlo

Size-extensive wave functions for QMC A linear-scaling GVB approach

Anion-π and π-π cooperative interactions

Van der Waals Interactions Between Thin Metallic Wires and Layers

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe

Random Estimates in QMC

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Quantum Mechanical Simulations

Fixed-Node quantum Monte Carlo for Chemistry

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

Theory and Applications of Quantum Monte Carlo. Michael John Deible. B.Sc.Ed. in Chemistry Education, Indiana University of Pennsylvania, 2008

The QMC Petascale Project

Continuum variational and diffusion quantum Monte Carlo calculations

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules

the abdus salam international centre for theoretical physics

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Quantum Monte Carlo methods

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

Density Functional Theory

Ab-initio simulation of liquid water by quantum Monte Carlo

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

The Self Interaction Correction revisited

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

arxiv: v1 [cond-mat.mes-hall] 10 Feb 2010

BEC-BCS Crossover in Cold Atoms

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Theoretical study of electronic and atomic structures of (MnO)n

The Schrödinger equation for many-electron systems

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

First- principles studies of spin-crossover molecules

QMC in the Apuan Alps IV Vallico Sotto, 28th July 2008

1 Density functional theory (DFT)

Optimization of quantum Monte Carlo wave functions by energy minimization

Phonon wavefunctions and electron phonon interactions in semiconductors

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Development and application of statistical and quantum mechanical methods for modelling molecular ensembles

Phase Diagram of the Two-Dimensional Homogeneous Electron Gas

Metal-insulator transitions

Computational Methods. Chem 561

Oslo node. Highly accurate calculations benchmarking and extrapolations

arxiv: v1 [cond-mat.mtrl-sci] 21 Dec 2007

Lecture 8: Introduction to Density Functional Theory

NCTS One-Day Workshop. Yasutami Takada. cf. YT, Ryo Maezono, & Kanako Yoshizawa, Phys. Rev. B 92, (2015)

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

The Overhauser Instability

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Variational Monte Carlo Optimization and Excited States

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Non-covalent force fields computed ab initio

Establishing Quantum Monte Carlo and Hybrid Density Functional Theory as Benchmarking Tools for Complex Solids

QUANTUM CHEMISTRY FOR TRANSITION METALS

physica status solidi REPRINT basic solid state physics The quantum Monte Carlo method

Dept of Mechanical Engineering MIT Nanoengineering group

Ab-initio molecular dynamics for High pressure Hydrogen

Binding energy of bilayer graphene and Electronic properties of oligoynes

Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods

Time-dependent linear-response variational Monte Carlo.

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Pseudopotentials for hybrid density functionals and SCAN

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

Density Functional Theory - II part

Exploring deep Earth minerals with accurate theory

Quantum Monte Carlo, or, how to solve the many-particle Schrödinger equation accurately whilst retaining favourable scaling with system size

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Computational Physics. J. M. Thijssen

Methods for calculating forces within quantum Monte Carlo

Quantum Monte Carlo. QMC methods in the continuum

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Performance of Hartree-Fock and Correlated Methods

Density functional theory in the solid state

Binding energy of 2D materials using Quantum Monte Carlo

Supporting Information: Predicting the Ionic Product of Water

Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity

Properties of reactive oxygen species by quantum Monte Carlo

Exercise 1: Structure and dipole moment of a small molecule

arxiv:physics/ v2 [physics.chem-ph] 9 Apr 2005

Introduction to Path Integral Monte Carlo. Part I.

energy. Finally, we combine these developments with the recently proposed inhomogeneous backflow transformations.

Regional Self-Interaction Correction of Density Functional Theory

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Computational Chemistry I

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

One-Electron Hamiltonians

Many-body wavefunctions for normal liquid 3 He

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

METALLIZATION AND DISSOCIATION IN HIGH PRESSURE LIQUID HYDROGEN BY AN EFFICIENT MOLECULAR DYNAMICS WITH QUANTUM MONTE CARLO

Electronic Structure Calculations and Density Functional Theory

GEM4 Summer School OpenCourseWare

Transcription:

QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 1/19

Introduction Water Physical and chemical properties: strong polar hydrogen bonds Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 2/19

Introduction Water Physical and chemical properties: strong polar hydrogen bonds Monomer Dimer Trimer Bulk water Binding energy of only a few kcal/mol Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 2/19

Introduction Water Physical and chemical properties: strong polar hydrogen bonds Monomer Dimer Trimer Bulk water Binding energy of only a few kcal/mol DIMER: prototype of all hydrogen-bonded systems Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 2/19

Previous calculations on H 2 O and (H 2 O) 2 MP2, CCSD(T), CI + correlation effects quite accurate - basis set truncation errors - basis set superposition errors - N 5, N 7 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 3/19

Previous calculations on H 2 O and (H 2 O) 2 MP2, CCSD(T), CI + correlation effects quite accurate - basis set truncation errors - basis set superposition errors - N 5, N 7 Density functional theory (DFT) + More favorable scaling - Strong dependence on the XC functional Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 3/19

This work on H 2 O and (H 2 O) 2 Quantum Monte Carlo + electronic correlation explicitly + Scales as N 3 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 4/19

This work on H 2 O and (H 2 O) 2 Quantum Monte Carlo + electronic correlation explicitly + Scales as N 3 THIS WORK = VMC and DMC Energies of H 2 O and (H 2 O) 2 All-electron (AE) and Pseudopotential (PP) calculations Slater-Jastrow (SJ) and Slater-Jastrow-Backflow (BF) wave functions = Electronic dissociation energy of (H 2 O) 2 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 4/19

VMC, DMC VMC Accuracy determined by the trial wave function biased energy differences for optmizing parameters of the wave function DMC Project out the ground state component of the trial wave function Fermionic symmetry: fixed node approximation CASINO code Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 5/19

Trial wave function Slater-Jastrow (SJ) wave function R={r i } Ψ SJ (R) = e J(R) Ψ S (R) Jastrow factor: e J(R) Slater determinant: Ψ S = D D Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 6/19

Trial wave function Slater-Jastrow (SJ) wave function R={r i } Ψ SJ (R) = e J(R) Ψ S (R) Jastrow factor: e J(R) Slater determinant: Ψ S = D D Slater-Jastrow-Backflow (BF) wave function Ψ BF (X) = e J(R) Ψ S (X) x i = r i + ξ i (R) Backflow displacement: ξ i (R) [PLR: 24/07, 9:30am] Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 6/19

Single particle orbitals CRYSTAL98 code Basis set: Roos augmented double zeta ANO (s, p, d) B3LYP orbitals seem to give better nodes than Hartree-Fock orbitals use parameters in XC functional to optimise orbitals Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 7/19

Single particle orbitals CRYSTAL98 code Basis set: Roos augmented double zeta ANO (s, p, d) B3LYP orbitals seem to give better nodes than Hartree-Fock orbitals use parameters in XC functional to optimise orbitals E xc = (1 A)(E LDA x A : Fock exchange B : non-local exchange C : non-local correlation +B Ex Becke )+A Ex HF +(1 C) Ec VWN +C Ec LYP True B3LYP A = 0.2, B = 0.9 and C = 0.81 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 7/19

B3LYP orbitals E xc = (1 A)(E LDA x + B Ex Becke ) + A Ex HF + (1 C) E VWN c A = 1 = E DMC = 76.4218(1) Ha HF = E DMC = 76.42205(8) Ha + C E LYP c Exchange is the most important contribution = Use A as optimisable parameter keeping B and C constant Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 8/19

B3LYP-25 orbitals DMC Energy (Ha) -76.4216-76.4218-76.4220-76.4222-76.4224-76.4226-76.4228-76.4230-76.4232-76.4234-76.4236-76.4238-76.4240 DFT Energy (Ha) -76.44-76.45-76.46-76.47 0 20 40 60 80 100 % Fock Exchange -76.4242 0 10 20 30 40 50 60 70 80 90 100 % Fock Exchange in XC functional Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 9/19

Summary of details SJ and BF trial wave functions J/BF parameters: minimize variance of local energy B3LYP-25 single-particle orbitals AE: single-particle orbitals corrected obey cusp conditions PP: From Hartree-Fock theory work well with QMC avoid short-range variations of the wavefunction near the nuclei = larger time steps Various time steps + extrapolation to zero time Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 10/19

Geometries Monomer: experimental equilibrium geometry r OH = r OH = 0.9572 Å = 104.52 o Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 11/19

Geometries Monomer: experimental equilibrium geometry r OH = r OH = 0.9572 Å = 104.52 o Dimer: CCSD(T) geometry (Klopper et. al) O a acceptor donor H a H H f d H a Od r OO = 2.912 Å (Deformations neglected) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 11/19

Geometries Monomer: experimental equilibrium geometry r OH = r OH = 0.9572 Å = 104.52 o Dimer: CCSD(T) geometry (Klopper et. al) O a acceptor donor H a H H f d H a Od Electronic dissociation energy r OO = 2.912 Å (Deformations neglected) (H 2 O) 2 2 H 2 O D e = D o ZPE Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 11/19

Water monomer total energy (Ha) 97.4% B3LYP-like -76.4361 Exact -76.438 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 12/19

Water monomer total energy (Ha) VMC-SJ -76.3773(2) DMC-SJ B3LYP-like Exact -76.4230(1) -76.42371(6) -76.4361-76.438 93.4% Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 12/19

Water monomer total energy (Ha) VMC-SJ -76.3773(2) DMC-SJ (HF) DMC-SJ B3LYP-like Exact -76.42102(4) -76.4219(1) -76.4230(1) -76.42371(6) -76.4361-76.438 97.4% Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 12/19

Water monomer total energy (Ha) VMC-SJ -76.3773(2) 84% VMC-BF -76.4010(1) 90% DMC-SJ DMC-BF -76.42371(6) -76.42792(15) 96.2% 97.4% Exact -76.438 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 12/19

Water monomer total energy (Ha) VMC-SJ -76.3773(2) VMC-BF -76.4010(1) DMC-SJ DMC-BF DMC-PNO-CI -76.42371(6) -76.42792(15) -76.429(1) 97.4% Exact -76.438 Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 12/19

Water monomer total energy (Ha) VMC-SJ -76.3773(2) VMC-BF -76.4010(1) DMC-SJ DMC-BF DMC-PNO-CI CCSD(T)-R12 Exact -76.42371(6) -76.42792(15) -76.429(1) -76.4373-76.438 97.4% Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 12/19

H 2 O, extrapolation to zero time DMC Energy (Ha) -76.4230-76.4235-76.4240-76.4245-76.4250-76.4255-76.4260-76.4265-76.4270-76.4275-76.4280-76.4285-76.4290-76.4295-76.4300-76.4305-76.4310 0 0.002 0.004 0.006 0.008 0.01 0.012 Time step (au) SJ BF Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 13/19

Water dimer acceptor donor O a H H f d H a Od H a Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 14/19

Pseudopotential calculations DMC Energy (Ha) -34.4140-34.4160-34.4180-34.4200-34.4220-34.4240-34.4260-34.4280-34.4300-34.4320-34.4340-34.4360-34.4380 (H 2 O) 2 (SJ) (H 2 O) 2 (BF) 0 0.01 0.02 0.03 0.04 0.05 0.06 Time step (au) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 15/19

Pseudopotential calculations DMC Energy (Ha) -34.4140-34.4160-34.4180-34.4200-34.4220-34.4240-34.4260-34.4280-34.4300-34.4320-34.4340-34.4360-34.4380 2 x H 2 O (SJ) 2 x H 2 O (BF) 0 0.01 0.02 0.03 0.04 0.05 0.06 Time step (au) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 15/19

Pseudopotential calculations DMC Energy (Ha) -34.4140-34.4160-34.4180-34.4200-34.4220-34.4240-34.4260-34.4280-34.4300-34.4320-34.4340-34.4360-34.4380 2 x H 2 O (SJ) (H 2 O) 2 (SJ) 2 x H 2 O (BF) (H 2 O) 2 (BF) 0 0.01 0.02 0.03 0.04 0.05 0.06 Time step (au) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 15/19

All-electron calculations DMC Energy (Ha) -152.8460-152.8480-152.8500-152.8520-152.8540-152.8560-152.8580-152.8600-152.8620-152.8640-152.8660-152.8680-152.8700 2 x H 2 O (SJ) (H 2 O) 2 (SJ) 0 0.002 0.004 0.006 0.008 0.01 0.012 Time step (au) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 16/19

All-electron calculations DMC Energy (Ha) -152.8460-152.8480-152.8500-152.8520-152.8540-152.8560-152.8580-152.8600-152.8620-152.8640-152.8660-152.8680-152.8700 2 x H 2 O (SJ) (H 2 O) 2 (SJ) 2 x H 2 O (BF) (H 2 O) 2 (BF) 0 0.002 0.004 0.006 0.008 0.01 0.012 Time step (au) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 16/19

Dissociation energy (D e ) D e (kcal/mol) 5.7 5.6 5.5 5.4 5.3 5.2 5.1 4.9 5 4.8 AE-SJ PP-BF PP-SJ 0 0.01 0.02 0.03 0.04 0.05 Time step (au) Method D e (kcal/mol) AE-SJ 5.23(11) PP-SJ 5.03(7) PP-BF 5.43(10) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 17/19

Dissociation energy (D e ) D e (kcal/mol) 5.7 5.6 5.5 5.4 5.3 5.2 5.1 4.9 5 4.8 AE-SJ PP-BF PP-SJ 0 0.01 0.02 0.03 0.04 0.05 Time step (au) Method D e (kcal/mol) AE-SJ 5.23(11) PP-SJ 5.03(7) PP-BF 5.43(10) DMC-HF 5.02(18) DMC-B3LYP 5.21(18) CCSD(T) 5.04(5) Exp 5.44(70) Exp 5.00(70) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 17/19

Conclusions AE and PP total energies of H 2 O and (H 2 O) 2 SJ and BF wave functions with B3LYP-like single-particle orbitals Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 18/19

Conclusions AE and PP total energies of H 2 O and (H 2 O) 2 SJ and BF wave functions with B3LYP-like single-particle orbitals Water monomer B3LYP-like orbitals lower the H 2 O DMC energy 1.5 mha compared to HF orbitals better nodal surface BF correlations reduce the DMC energy by an additional 4-5 mha E = -76.42792(15) Ha (10 mha above exact value) Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 18/19

Conclusions AE and PP total energies of H 2 O and (H 2 O) 2 SJ and BF wave functions with B3LYP-like single-particle orbitals Water monomer B3LYP-like orbitals lower the H 2 O DMC energy 1.5 mha compared to HF orbitals better nodal surface BF correlations reduce the DMC energy by an additional 4-5 mha E = -76.42792(15) Ha (10 mha above exact value) D e of water dimer Time step errors cancel Extrapolated D e for AE and PP with SJ and BF wave functions within error bars of exact value Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 18/19

Acknowledgments... Financial support from the Basque Government through Research Fellowship BFI 04/183 Calculations were performed at the Cambridge-Cranfield High Performance Computing Facility Idoia G. de Gurtubay. Quantum Monte Carlo in the Apuan Alps II. July 23, 2006 QMC dissociation energy of the water dimer - p. 19/19