From Newton s law to the linear Boltzmann equation without cut-off

Similar documents
From Newton s law to the linear Boltzmann equation without cut-off

VALIDITY OF THE BOLTZMANN EQUATION

The propagation of chaos for a rarefied gas of hard spheres

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella

Diffusion d une particule marquée dans un gaz dilué de sphères dures

Dynamique d un gaz de sphères dures et équation de Boltzmann

From Hamiltonian particle systems to Kinetic equations

Hilbert Sixth Problem

Isabelle Gallagher. Laure Saint-Raymond. Benjamin Texier FROM NEWTON TO BOLTZMANN: HARD SPHERES AND SHORT-RANGE POTENTIALS

Kinetic theory of gases

Exponential tail behavior for solutions to the homogeneous Boltzmann equation

THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL

Complex systems: Self-organization vs chaos assumption

From microscopic dynamics to kinetic equations

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

From molecular dynamics to kinetic theory and hydrodynamics

Semigroup factorization and relaxation rates of kinetic equations

Derivation of Kinetic Equations

Kinetic Transport Theory

On the Boltzmann equation: global solutions in one spatial dimension

Entropic structure of the Landau equation. Coulomb interaction

A Selective Modern History of the Boltzmann and Related Eq

YAN GUO, JUHI JANG, AND NING JIANG

ON A NEW CLASS OF WEAK SOLUTIONS TO THE SPATIALLY HOMOGENEOUS BOLTZMANN AND LANDAU EQUATIONS

From the N-body problem to the cubic NLS equation

Kinetic models of Maxwell type. A brief history Part I

Exponential moments for the homogeneous Kac equation

Models of collective displacements: from microscopic to macroscopic description

Modelling and numerical methods for the diffusion of impurities in a gas

Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres

Equilibrium and transport in Tokamaks

The Boltzmann Equation and Its Applications

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Introduction Statistical Thermodynamics. Monday, January 6, 14

Hypocoercivity for kinetic equations with linear relaxation terms

Transport coefficients in plasmas spanning weak to strong correlation

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray

Hydrodynamic Limit with Geometric Correction in Kinetic Equations

CURRICULUM VITAE. Sergio Simonella

Rigid Body Motion in a Special Lorentz Gas

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

A few words about the MTW tensor

Mathematical modelling of collective behavior

(Ir)reversibility and entropy Cédric Villani University of Lyon & Institut Henri Poincaré 11 rue Pierre et Marie Curie Paris Cedex 05, FRANCE

Fluid Dynamics from Kinetic Equations

Invisible Control of Self-Organizing Agents Leaving Unknown Environments

Stochastic Particle Methods for Rarefied Gases

summary of statistical physics

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions

ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

ON THE LANDAU APPROXIMATION IN PLASMA PHYSICS

2. Thermodynamics. Introduction. Understanding Molecular Simulation

Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics

Bayesian inverse problems with Laplacian noise

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Fourier Law and Non-Isothermal Boundary in the Boltzmann Theory

arxiv: v1 [math.ap] 6 Apr 2016

arxiv: v1 [math.ap] 28 Apr 2009

Particle-Simulation Methods for Fluid Dynamics

On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology

Stochastic Proximal Gradient Algorithm

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

Transport Continuity Property

arxiv: v2 [math-ph] 25 Jun 2009

Hydrodynamic Limits for the Boltzmann Equation

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

The Hopf equation. The Hopf equation A toy model of fluid mechanics

Physics 212: Statistical mechanics II Lecture IV

Un problème inverse: l identification du profil de courant dans un Tokamak

Concentration Inequalities for Random Matrices

Anomalous transport of particles in Plasma physics

analysis for transport equations and applications

Nanoscale simulation lectures Statistical Mechanics

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Remarks on 2D inverse cascade

Infinite Series. 1 Introduction. 2 General discussion on convergence

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

On Weak Solutions to the Linear Boltzmann Equation with Inelastic Coulomb Collisions

CE 530 Molecular Simulation

A REVIEW OF THE KINETIC MODELINGS FOR NON-REACTIVE AND REACTIVE DENSE FLUIDS: QUESTIONS AND PROBLEMS. 1. Introduction

Lectures on basic plasma physics: Introduction

Analisis para la ecuacion de Boltzmann Soluciones y Approximaciones

Integro-differential equations and Boltzmann

The Equipartition Theorem

Different types of phase transitions for a simple model of alignment of oriented particles

Fractional parabolic models arising in flocking. dynamics and fluids. Roman Shvydkoy jointly with Eitan Tadmor. April 18, 2017

Time Evolution of Infinite Classical Systems. Oscar E. Lanford III

Particles approximation for Vlasov equation with singular interaction

The Bernoulli Equation

Mean Field Limit for Stochastic Particle Systems

Math Review Night: Work and the Dot Product

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt).

Notes for Expansions/Series and Differential Equations

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 9. Microscopic Approach: from Boltzmann to Navier-Stokes. In the previous chapter we derived the closed Boltzmann equation:

Eigenvalues of Robin Laplacians on infinite sectors and application to polygons

Kinetic Transport Theory

Theory of Cosmological Perturbations

Transcription:

From Newton s law to the linear Boltzmann equation without cut-off Nathalie Ayi 1,2 1 Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis 2 Project COFFEE, INRIA Sophia Antipolis Méditerranée 13 Mai 216 Nathalie AYI MATKIT Cambridge 13 Mai 216 1 / 23

Context Kinetic theory of gases = Describe a gas as a physical system constituted of a large number of small particles. Nathalie AYI MATKIT Cambridge 13 Mai 216 2 / 23

Context Kinetic theory of gases = Describe a gas as a physical system constituted of a large number of small particles. Statistical point of view : we are interested in the evolution of the density of particles f (t, x, v) where Nathalie AYI MATKIT Cambridge 13 Mai 216 2 / 23

Context Kinetic theory of gases = Describe a gas as a physical system constituted of a large number of small particles. Statistical point of view : we are interested in the evolution of the density of particles f (t, x, v) where t = time x = position v = velocity Nathalie AYI MATKIT Cambridge 13 Mai 216 2 / 23

Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions Nathalie AYI MATKIT Cambridge 13 Mai 216 3 / 23

Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions In the sixth problem of Hilbert (19), idea = Boltzmann equation as an intermediate step in the transition between atomistic and contiuous model for gas dynamics. Nathalie AYI MATKIT Cambridge 13 Mai 216 3 / 23

Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions In the sixth problem of Hilbert (19), idea = Boltzmann equation as an intermediate step in the transition between atomistic and contiuous model for gas dynamics. Nathalie AYI MATKIT Cambridge 13 Mai 216 3 / 23

Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions In the sixth problem of Hilbert (19), idea = Boltzmann equation as an intermediate step in the transition between atomistic and contiuous model for gas dynamics. Nathalie AYI MATKIT Cambridge 13 Mai 216 3 / 23

Lanford proved the derivation of the Boltzmann equation from systems of particles in the context of hard-spheres (1975). Nathalie AYI MATKIT Cambridge 13 Mai 216 4 / 23

Lanford proved the derivation of the Boltzmann equation from systems of particles in the context of hard-spheres (1975). Particles bounces off according to the laws of elastic reflection. Nathalie AYI MATKIT Cambridge 13 Mai 216 4 / 23

Recently rigorously proved by Gallagher, Saint-Raymond and Texier, Pulvirenti, Saffirio and Simonella in the context of hard-spheres and short range potentials. (Figure : The Boltzmann equation and its application, Cercignani.) Nathalie AYI MATKIT Cambridge 13 Mai 216 5 / 23

Recently rigorously proved by Gallagher, Saint-Raymond and Texier, Pulvirenti, Saffirio and Simonella in the context of hard-spheres and short range potentials. (Figure : The Boltzmann equation and its application, Cercignani.) Our context : infinite-range potentials. Nathalie AYI MATKIT Cambridge 13 Mai 216 5 / 23

The Boltzmann equation without cut-off t f + v. x f = Q(f, f ) where Q(f, f ) = [f f 1 ff 1 ]B(v v 1, ω)dv 1 dω, with f = f (v), f = f (v ), f 1 = f (v 1 ), f 1 = f (v 1 ). B = cross-section, B( v v 1, cosθ) with θ = deviation angle. Nathalie AYI MATKIT Cambridge 13 Mai 216 6 / 23

The Boltzmann equation without cut-off t f + v. x f = Q(f, f ) where Q(f, f ) = [f f 1 ff 1 ]B(v v 1, ω)dv 1 dω, with f = f (v), f = f (v ), f 1 = f (v 1 ), f 1 = f (v 1 ). B = cross-section, B( v v 1, cosθ) with θ = deviation angle. Example Inverse-power law potentials : The cross-section satisfies Φ(r) = 1, s > 2. rs 1 B( v v 1, cos θ) = b(cosθ) v v 1 γ, sin d 2 θb(cos θ) Cθ 1 α, α > Nathalie AYI MATKIT Cambridge 13 Mai 216 6 / 23

Grazing collisions = Singularity. Nathalie AYI MATKIT Cambridge 13 Mai 216 7 / 23

Grazing collisions = Singularity. Cauchy theory : Alexandre, Villani (22), Gressman et al (21), Alexandre et al (211)... Nathalie AYI MATKIT Cambridge 13 Mai 216 7 / 23

Grazing collisions = Singularity. Cauchy theory : Alexandre, Villani (22), Gressman et al (21), Alexandre et al (211)... f (v)f (v 1 ) f (v )f (v 1) Nathalie AYI MATKIT Cambridge 13 Mai 216 7 / 23

Result Microscopic Model : for i {1,..., N}, x i T d, v i R d, dx i = v i, dt dv i = 1 Φ( x i x j ). dt ε ε j i Nathalie AYI MATKIT Cambridge 13 Mai 216 8 / 23

Result Microscopic Model : for i {1,..., N}, x i T d, v i R d, dx i = v i, dt dv i = 1 Φ( x i x j ). dt ε ε Small perturbation around the equilibrium : j i f N(Z N ) := M N,β (Z N )ρ (x 1 ) (1) ρ density of probability on T d, M N,β Gibbs measure : for β > with H N (Z N ) := M N,β (Z N ) := 1 ( ) dn/2 β exp( βh N (Z N )) (2) Z N 2π 1 i N 1 2 v i 2 + 1 i<j N Φ( (x i x j ). ε Nathalie AYI MATKIT Cambridge 13 Mai 216 8 / 23

Theorem (A., 216) Consider the initial distribution fn defined above, then the distribution f (1) N (t, x, v) of the tagged particle converges in D (T d R d ) when N goes to under the Boltzmann-Grad scaling Nε d 1 = 1 to M β (v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off t h + v. x h = [h(v) h(v 1 )]M β (v 1 )b(v v 1 )dv 1 dν (3) with initial data ρ (x 1 ) and where M β (v) := ( ) d/2 ) β 2π exp ( β2 v 2, β >. Nathalie AYI MATKIT Cambridge 13 Mai 216 9 / 23

Theorem (A., 216) Consider the initial distribution fn defined above, then the distribution f (1) N (t, x, v) of the tagged particle converges in D (T d R d ) when N goes to under the Boltzmann-Grad scaling Nε d 1 = 1 to M β (v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off t h + v. x h = [h(v) h(v 1 )]M β (v 1 )b(v v 1 )dv 1 dν (3) with initial data ρ (x 1 ) and where M β (v) := ( ) d/2 ) β 2π exp ( β2 v 2, β >. First partial result : The linear Boltzmann equation for long-range forces : a derivation from particles system, Desvillettes and Pulvirenti (1999). Nathalie AYI MATKIT Cambridge 13 Mai 216 9 / 23

Theorem (A., 216) Consider the initial distribution fn defined above, then the distribution f (1) N (t, x, v) of the tagged particle converges in D (T d R d ) when N goes to under the Boltzmann-Grad scaling Nε d 1 = 1 to M β (v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off t h + v. x h = [h(v) h(v 1 )]M β (v 1 )b(v v 1 )dv 1 dν (3) with initial data ρ (x 1 ) and where M β (v) := ( ) d/2 ) β 2π exp ( β2 v 2, β >. First partial result : The linear Boltzmann equation for long-range forces : a derivation from particles system, Desvillettes and Pulvirenti (1999). Idea : Φ = Φ >R + Φ <R. Nathalie AYI MATKIT Cambridge 13 Mai 216 9 / 23

The hard-sphere case The BBGKY hierarchy : for s < N, ( t + s i=1 v i. xi )f (s) N (t, Z s) = (C s,s+1 f (s+1) N )(t, Z s ) with C s,s+1 = the collision term, Z s = (z 1,..., z s ), z i = (x i, v i ). Nathalie AYI MATKIT Cambridge 13 Mai 216 1 / 23

The hard-sphere case The BBGKY hierarchy : for s < N, ( t + s i=1 v i. xi )f (s) N (t, Z s) = (C s,s+1 f (s+1) N )(t, Z s ) with C s,s+1 = the collision term, Z s = (z 1,..., z s ), z i = (x i, v i ). Duhamel s formula : f (s) N (t) = T s(t)f (s) N () + t T s (t t 1 )C s,s+1 f (s+1) N (t 1 )dt 1. Nathalie AYI MATKIT Cambridge 13 Mai 216 1 / 23

Iterated Duhamel s formula. The BBGKY series : f (s) N N s (t) = n= t t1 tn 1... T s (t t 1 )C s,s+1 T s+1 (t 1 t 2 )C s+1,s+2... T s+n (t n ) f (s+n) N ()dt n... dt 1. Nathalie AYI MATKIT Cambridge 13 Mai 216 11 / 23

Iterated Duhamel s formula. The BBGKY series : f (s) N N s (t) = n= t t1 tn 1... T s (t t 1 )C s,s+1 T s+1 (t 1 t 2 )C s+1,s+2... T s+n (t n ) f (s+n) N ()dt n... dt 1. The Boltzmann series : g (s) (t) = n t t1 tn 1... Ts (t t 1 )Cs,s+1T s+1(t 1 t 2 )Cs+1,s+2... T s+n (t n ) g (s+n) ()dt n... dt 1 Nathalie AYI MATKIT Cambridge 13 Mai 216 11 / 23

Iterated Duhamel s formula. The BBGKY series : f (s) N N s (t) = n= t t1 tn 1... T s (t t 1 )C s,s+1 T s+1 (t 1 t 2 )C s+1,s+2... T s+n (t n ) f (s+n) N ()dt n... dt 1. The Boltzmann series : g (s) (t) = n t t1 tn 1... Ts (t t 1 )Cs,s+1T s+1(t 1 t 2 )Cs+1,s+2... T s+n (t n ) g (s+n) ()dt n... dt 1 Strategy : Notion of pseudo-trajectories. Nathalie AYI MATKIT Cambridge 13 Mai 216 11 / 23

t 2 t 1 t Figure : Representation of a collision tree associated to the term t t1 1 5 2 4 3 T 3 (t t 1 )C j1,2 3,4 T 4 (t 1 t 2 )C j2,1 4,5 T 5(t 2 )f (5) N ()dt 2dt 1. 5 4 1 2 3 Nathalie AYI MATKIT Cambridge 13 Mai 216 12 / 23

t 2 t 1 t Figure : Representation of a collision tree associated to the term t t1 1 5 2 4 3 T 3 (t t 1 )C j1,2 3,4 T 4 (t 1 t 2 )C j2,1 4,5 T 5(t 2 )f (5) N ()dt 2dt 1. Strategy : Coupling of the pseudo-trajectories. 5 4 1 2 3 Nathalie AYI MATKIT Cambridge 13 Mai 216 12 / 23

Recollision v 1 v 2 v 3 t t 2 Figure : An example of a recollision between particles 1 and 2 at time t. t 1 t Nathalie AYI MATKIT Cambridge 13 Mai 216 13 / 23

Recollision v 1 v 2 v 3 t t 2 Figure : An example of a recollision between particles 1 and 2 at time t. Strategy : Geometrical control of the recollisions t 1 t Nathalie AYI MATKIT Cambridge 13 Mai 216 13 / 23

The linear Boltzmann equation case Bodineau, Gallagher and Saint-Raymond (214) : overcome the difficulty of the short time validity in the case of a fluctuation around the equilibrium. Nathalie AYI MATKIT Cambridge 13 Mai 216 14 / 23

The linear Boltzmann equation without cut-off Truncated marginals : (s) f N,R (t, Z s) := f N (t, Z s, z s+1,..., z N ) T d(n s) R d(n s) 1 i s s+1 j N 1 { xi x j >Rε}dz s+1... dz N Nathalie AYI MATKIT Cambridge 13 Mai 216 15 / 23

The linear Boltzmann equation without cut-off Truncated marginals : (s) f N,R (t, Z s) := f N (t, Z s, z s+1,..., z N ) T d(n s) R d(n s) The BBGKY hierachy : for s < N, t f (s) N,R + s i=1 = C s,s+1 f (s+1) N,R v i. xi f (s) N,R 1 ε +C s,s+1 f (s+1) N,R + (N s) ε i=1 s i,j=1 i j + 1 ε 1 i s s+1 j N Φ < ( x i x j (s) ). vi f N,R ε s i,j=1 i j Φ > ( x i x j (s) ). vi f N,R ε 1 { xi x j >Rε}dz s+1... dz N s Φ( x i x s+1 ). vi f N (t, Z N ) T d(n s) R ε d(n s) 1 l s s+1 k N 1 { xl x k >Rε}dZ (s+1,n) Nathalie AYI MATKIT Cambridge 13 Mai 216 15 / 23

Duhamel s formula : f (s) N,R (t, Z s) = S s (t) f (s) N,R (, Z s) + + t t + 1 ε + S s (t t 1 )C s,s+1 f (s+1) N,R (t 1, Z s )dt 1 S s (t t 1 )C s,s+1 f (s+1) N,R (t 1, Z s )dt 1 s t [ S s (t t 1 ) i,j=1 i j (N s) ε s i=1 t Φ > ( x i x j (s) ). vi f N,R ε ] (t 1, Z s )dt 1 [ S s (t t 1 ) Φ( x i x s+1 ). vi f N T d(n s) R ε d(n s) 1 l s s+1 k N 1 { xl x k >Rε}dZ (s+1,n) (t 1, Z s )dt 1 Nathalie AYI MATKIT Cambridge 13 Mai 216 16 / 23

Obstacles to the convergence Four possible obstacles to the convergence : - the very long-range interactions, - multiple simultaneous interactions, - the presence of recollisions, - super-exponential collision process. Nathalie AYI MATKIT Cambridge 13 Mai 216 17 / 23

Obstacles to the convergence Four possible obstacles to the convergence : - the very long-range interactions, - multiple simultaneous interactions, - the presence of recollisions, - super-exponential collision process. New terms = Weak approach. Nathalie AYI MATKIT Cambridge 13 Mai 216 17 / 23

Strategy Iteration on the term : t S s (t t 1 )C s,s+1 f (s+1) N,R (t 1, Z s )dt 1. Nathalie AYI MATKIT Cambridge 13 Mai 216 18 / 23

Definition of the operators : Q s,s (t) := S s (t) Q s,s+n (t) := t δ t1 δ... tn 1 δ S s (t t 1 )C s,s+1 χ Hs+1 ( 1 χgeom(s+1) ) χηs+1...... S s+n 1 (t n 1 t n )C s+n 1,s+n χ Hs+n ( 1 χgeom(s+n) ) χηs+n S s+n (t n )dt n... dt 1. Nathalie AYI MATKIT Cambridge 13 Mai 216 19 / 23

Definition of the operators : Q s,s (t) := S s (t) Q s,s+n (t) := t δ t1 δ... tn 1 δ S s (t t 1 )C s,s+1 χ Hs+1 ( 1 χgeom(s+1) ) χηs+1...... S s+n 1 (t n 1 t n )C s+n 1,s+n χ Hs+n ( 1 χgeom(s+n) ) χηs+n S s+n (t n )dt n... dt 1. Remainders associated to the long-range part : r Pot,a s,m+1 (, t, Z s) := m n= t nδ Q s,s+n (t t n+1 ) 1 ε s+n [ i,j=1 i j Φ > ( x i x j (s+n) ). vi f N,R ε ] (t n+1, Z s )dt n+1 Nathalie AYI MATKIT Cambridge 13 Mai 216 19 / 23

r Pot,b s,m+1 (, t, Z s) := m n= (N (s + n)) ε t nδ Q s,s+n (t t n+1 ) s+n [ Φ( x i x s+n+1 ). vi f N i=1 T d(n (s+n)) R ε d(n (s+n)) 1 l s+n s+n+1 k N 1 { xl x k >Rε}dZ (s+n,n) (t n+1, Z s )dt n+1. Nathalie AYI MATKIT Cambridge 13 Mai 216 2 / 23

Advantage of the iteration method no pathological situations easy to pass from Z m (t m ) to z (state of particle 1 at time t) via changes of variables such as T d R d [, t δ] S d 1 R d [, t m 1 δ] S d 1 R d T (m+1)d R (m+1)d (z, t 1, ν 2, v 2,..., t m, ν m+1, v m+1 ) Z m+1 = Z m+1 (t m). Nathalie AYI MATKIT Cambridge 13 Mai 216 21 / 23

Advantage of the iteration method no pathological situations easy to pass from Z m (t m ) to z (state of particle 1 at time t) via changes of variables such as T d R d [, t δ] S d 1 R d [, t m 1 δ] S d 1 R d T (m+1)d R (m+1)d (z, t 1, ν 2, v 2,..., t m, ν m+1, v m+1 ) Z m+1 = Z m+1 (t m). Key point : z Lipschitz function of ( x 1, ṽ 1,..., x m+1, ṽ m+1 ) Nathalie AYI MATKIT Cambridge 13 Mai 216 21 / 23

Advantage of the iteration method no pathological situations easy to pass from Z m (t m ) to z (state of particle 1 at time t) via changes of variables such as T d R d [, t δ] S d 1 R d [, t m 1 δ] S d 1 R d T (m+1)d R (m+1)d (z, t 1, ν 2, v 2,..., t m, ν m+1, v m+1 ) Z m+1 = Z m+1 (t m). Key point : z Lipschitz function of ( x 1, ṽ 1,..., x m+1, ṽ m+1 ) Tools to prove it : study of the reduced dynamics - bound on the microscopic time of interaction thanks to the lower bound on relative velocites, - use of the Cauchy-Lipschitz theorem, Φ being Lipschitz, - Lipschitz character of the collision times. Nathalie AYI MATKIT Cambridge 13 Mai 216 21 / 23

Lipschitz control associated to the pseudo-trajectories = bound of the remainder associated to the long-range part controlled by ( ) 2 K+1 e C R2 η Φ >. Nathalie AYI MATKIT Cambridge 13 Mai 216 22 / 23

Lipschitz control associated to the pseudo-trajectories = bound of the remainder associated to the long-range part controlled by ( ) 2 K+1 e C R2 η Φ >. Limit of the approach : Very decreasing potentials. Nathalie AYI MATKIT Cambridge 13 Mai 216 22 / 23

Thank you for your attention. Nathalie AYI MATKIT Cambridge 13 Mai 216 23 / 23