New Algebraic Properties of Middle Bol Loops

Similar documents
An holomorphic study of Smarandache automorphic and cross inverse property loops

On A Cryptographic Identity In Osborn Loops

On central loops and the central square property

A Pair of Smarandachely Isotopic Quasigroups and Loops of the Same Variety

Cheban loops. 1 Introduction

Conjugate Loops: An Introduction

ON THE UNIVERSALITY OF SOME SMARANDACHE LOOPS OF BOL-MOUFANG TYPE

On Middle Universal Weak and Cross Inverse Property Loops With Equal Length Of Inverse Cycles

Basic Properties Of Second Smarandache Bol Loops

Loops of Bol-Moufang type with a subgroup of index two

LOOPS OF BOL-MOUFANG TYPE WITH A SUBGROUP OF INDEX TWO

On Middle Universal m-inverse Quasigroups And Their Applications To Cryptography

Some isotopy-isomorphy conditions for m-inverse quasigroups and loops

A CLASS OF LOOPS CATEGORICALLY ISOMORPHIC TO UNIQUELY 2-DIVISIBLE BRUCK LOOPS

Realizations of Loops and Groups defined by short identities

arxiv: v3 [math.gr] 23 Feb 2010

Commentationes Mathematicae Universitatis Carolinae

The varieties of quasigroups of Bol Moufang type: An equational reasoning approach

NILPOTENCY IN AUTOMORPHIC LOOPS OF PRIME POWER ORDER

HALF-ISOMORPHISMS OF MOUFANG LOOPS

arxiv: v2 [math.rt] 3 Mar 2014

Classifying Bol-Moufang Quasigroups Under a Single Operation

THE VARIETIES OF QUASIGROUPS OF BOL-MOUFANG TYPE: AN EQUATIONAL REASONING APPROACH

Smarandache isotopy of second Smarandache Bol loops

Inverse Properties in Neutrosophic Triplet Loop and Their Application to Cryptography

THE STRUCTURE OF AUTOMORPHIC LOOPS

Levi s Commutator Theorems for Cancellative Semigroups

IMPLICATION ALGEBRAS

ON THE STRUCTURE AND ZERO DIVISORS OF THE CAYLEY-DICKSON SEDENION ALGEBRA

On the algebraic structure of Dyson s Circular Ensembles. Jonathan D.H. SMITH. January 29, 2012

SRAR loops with more than two commutators

KEN KUNEN: ALGEBRAIST

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES

( ) R kj. = y k y j. y A ( ) z A. y a. z a. Derivatives of the second order electrostatic tensor with respect to the translation of ( ) δ yβ.

Boolean Algebra. Examples: (B=set of all propositions, or, and, not, T, F) (B=2 A, U,, c, Φ,A)

A GRAPH-THEORETIC APPROACH TO QUASIGROUP CYCLE NUMBERS

Enumeration of involutory latin quandles, Bruck loops and commutative automorphic loops of odd prime power order

SYLOW THEORY FOR QUASIGROUPS II: SECTIONAL ACTION

N-ALGEBRAIC STRUCTURES AND S-N-ALGEBRAIC STRUCTURES

13. LECTURE 13. Objectives

Octonions. Robert A. Wilson. 24/11/08, QMUL, Pure Mathematics Seminar

Belousov s Theorem and the quantum Yang-Baxter equation

arxiv: v1 [math.ra] 3 Oct 2009

Commutative, idempotent groupoids and the constraint satisfaction problem

Automorphism Groups of Simple Moufang Loops over Perfect Fields

ON VARIETIES OF LEFT DISTRIBUTIVE LEFT IDEMPOTENT GROUPOIDS

Automated theorem proving in algebra

On Mikheev s construction of enveloping groups

Generators of certain inner mapping groups

Transversals in loops. 1. Elementary properties. 1. Introduction

Commutative idempotent groupoids and the constraint satisfaction problem

The Smarandache Bryant Schneider Group Of A Smarandache Loop

On Smarandache Bryant Schneider Group of A Smarandache Loop

BINARY REPRESENTATIONS OF ALGEBRAS WITH AT MOST TWO BINARY OPERATIONS. A CAYLEY THEOREM FOR DISTRIBUTIVE LATTICES

Vol. 34, By g. D. H. S~rr~

Wednesday, April 12. Today:

Semigroup, monoid and group models of groupoid identities. 1. Introduction

QUADRATIC LEVEL QUASIGROUP EQUATIONS WITH FOUR VARIABLES I. Aleksandar Krapež

Automated Theorem Proving in Quasigroup and Loop Theory

370 Y. B. Jun generate an LI-ideal by both an LI-ideal and an element. We dene a prime LI-ideal, and give an equivalent condition for a proper LI-idea

LEFT DISTRIBUTIVE LEFT QUASIGROUPS. PhD Thesis. Charles University in Prague. July 2004

Algebras inspired by the equivalential calculus

On groupoids with identity x(xy) = y

Commutative idempotent groupoids and the constraint satisfaction problem

Self-distributive quasigroups and quandles

EJL R Sβ. sum. General objective: Reduce the complexity of the analysis by exploiting symmetry. Garth J. Simpson

BOOLEAN ALGEBRA TRUTH TABLE

Quasigroups and Related Systems 14 (2006), Kenneth W. Johnson. Abstract. 1. Introduction

Groupoids and Smarandache Groupoids

FINITE SEMISIMPLE LOOP ALGEBRAS OF INDECOMPOSABLE RA LOOPS. 1. Introduction

RIGHT PRODUCT QUASIGROUPS AND LOOPS

Generalized Multiplicative Derivations in Near-Rings

MOUFANG LOOPS THAT SHARE ASSOCIATOR AND THREE QUARTERS OF THEIR MULTIPLICATION TABLES

On orthogonality of binary operations and squares

On Comultisets and Factor Multigroups

Special graphs and quasigroup functional equations

Generators of Nonassociative Simple Moufang Loops over Finite Prime Fields

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form

Characterization of Quasigroups and Loops

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

ALGEBRAIC PROPERTIES OF THE SHIFT MAPPING

European Journal of Combinatorics

BIALGEBRAIC STRUCTURES AND SMARANDACHE BIALGEBRAIC STRUCTURES

arxiv: v1 [math.gr] 8 Jan 2016

Mathematics 222a Quiz 2 CODE 111 November 21, 2002

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

On the Representation of Involutive Jamesian Functions

On Generalized Derivations. of Semiprime Rings

ON THE MULTIPLICATION GROUPS OF SEMIFIELDS

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Boolean Algebra and Logic Gates

Math 192r, Problem Set #3: Solutions

INTRODUCTION TO LIE ALGEBRAS. LECTURE 1.

Houston Journal of Mathematics. c 2016 University of Houston Volume 42, No. 1, 2016

Some theorems of commutativity on semiprime rings with mappings

On pseudoisomorphy and distributivity of quasigroups

FUZZY BCK-FILTERS INDUCED BY FUZZY SETS

Contents. Chapter 2 Digital Circuits Page 1 of 30

Chapter 2 : Boolean Algebra and Logic Gates

AUTOMORPHISMS OF DIHEDRAL-LIKE AUTOMORPHIC LOOPS

Transcription:

New Algebraic Properties of Middle Bol Loops arxiv:1606.09169v1 [math.gr] 28 Jun 2016 T. G. Jaiyéọlá Department of Mathematics, Obafemi Awolowo University, Ile Ife 220005, Nigeria. jaiyeolatemitope@yahoo.com tjayeola@oauife.edu.ng S. P. David Department of Mathematics, Obafemi Awolowo University, Ile Ife 220005, Nigeria. davidsp4ril@yahoo.com davidsp4ril@gmail.com Y. T. Oyebo Department of Mathematics, Lagos State University, Ojo, Lagos State, Nigeria oyeboyt@yahoo.com, yakub.oyebo@lasu.edu.ng Abstract A loop Q,,\,/) is called a middle Bol loop if it obeys the identity xyz\x) = x/z)y\x). In this paper, some new algebraic properties of a middle Bol loop are established. Four bi-variate mappings f i,g i, i = 1,2 and four j-variate mappings α j,β j,φ j,ψ j, j N are introduced and some interesting properties of the former are found. Neccessary and sufficient conditons in terms of f i,g i, i = 1,2, for a middle Bol loop to have the elasticity property, RIP, LIP, right alternative propertyrap) and left alternative property LAP) are establsihed. Also, neccessary and sufficient conditons in terms of α j,β j,φ j,ψ j, j N, for a middle Bol loop to have power RAP and power LAP are establsihed. Neccessary and sufficient conditons in terms of f i,g i, i = 1,2 and α j,β j,φ j,ψ j, j N, for a middle Bol loop to be a group, Moufang loop or extra loop are established. A middle Bol loop is shown to belong to some classes of loops whose identiites are of the J.D. Phillips RIF-loop and WRIF-loop generalizations of Moufang and Steiner loops) and WIP power associative conjugacy closed loop types if and only if some identities defined by g 1 and g 2 are obeyed. 1 Introduction Let G be a non-empty set. Define a binary operation ) on G. If x y G for all x,y G, then the pair G, ) is called a groupoid or Magma. 2010 Mathematics Subject Classification. Primary 20N02, 20N05 Keywords and Phrases : Bol loops, middle Bol loops, Moufang loops All correspondence to be addressed to this author. 1

If each of the equations: a x = b and y a = b has unique solutions in G for x and y respectively, then G, ) is called a quasigroup. If there exists a unique element e G called the identity element such that for all x G, x e = e x = x, G, ) is called a loop. We write xy instead of x y, and stipulate that has lower priority than juxtaposition among factors to be multiplied. For instance, x yz stands for xyz). Let x be a fixed element in a groupoid G, ). The left and right translation maps of G, L x and R x respectively can be defined by yl x = x y and yr x = y x. It can be seen that a groupoid G, ) is a quasigroup if it s left and right translation mappings are bijections or permutations. Since the left and right translation mappings of a loop are bijective, then the inverse mappings L 1 x and Rx 1 exist. Let and note that x\y = yl 1 x = yl x = xr y and x/y = xr 1 y = xr y = yl x x\y = z x z = y and x/y = z z y = x. Hence, G,\)andG,/)arealsoquasigroups. Using theoperations\)and/), thedefinition of a loop can be stated as follows. Definition 1.1. A loop G,,/,\,e) is a set G together with three binary operations ), /), \) and one nullary operation e such that i) x x\y) = y, y/x) x = y for all x,y G, ii) x\x y) = y, y x)/x = y for all x,y G and iii) x\x = y/y or e x = x for all x,y G. We also stipulate that /) and \) have higher priority than ) among factors to be multiplied. For instance, x y/z and x y\z stand for xy/z) and xy\z) respectively. In a loop G, ) with identity element e, the left inverse element of x G is the element xj λ = x λ G such that x λ x = e while the right inverse element of x G is the element xj ρ = x ρ G such that x x ρ = e. For an overview of the theory of loops, readers may check [2, 3, 4, 7, 11, 16, 20, 25]. A loop G, ) is said to be a power associative loop if < x > is a subgroup for all x G and a diassociative loop if < x,y > is a subgroup for all x,y G. 2

Definition 1.2. Let G, ) be a loop. G is said to be a left alternative property loop LAPL) if for all x,y G, x xy = xx y, a right alternative property loop RAPL)if for all x,y G, yx x = y xx, and an alternative loop if it is both left and right alternative. A power associativeloop G, ) is said to be a power leftalternative propertyloop PLAPL) if for all x,y G, x xxy)) ) = x }{{} n y and a power right alternative property loop n times PRAPL)if for all x,y G, yx)x) )x = yx }{{} n. n times A loop G, ) is called a flexible or an elastic loop if the flexibility or elasticity property xy x = x yx holds for all x,y G. G, ) is said to have the left inverse property LIP) if for all x,y G, x λ xy = y, the right inverse property RIP) if for all x,y G, yx x ρ = y and the inverse property if it has both left and right inverse properties. Therearesomeclassesofloopswhichdonothavetheinverse propertybuthaveproperties which can be considered as variations of the inverse property. A loop G, ) is called a weak inverse property loop WIPL) if and only if it obeys the identity xyx) ρ = y ρ or xy) λ x = y λ 1) for all x,y G. Definition 1.3. A loop G, ) is called a cross inverse property loopcipl) if it obeys the identity xy x ρ = y or x yx ρ = y or x λ yx) = y or x λ y x = y 2) for all x,y, G. A loop G, ) is called an automorphic inverse property loopaipl) if it obeys the identity xy) ρ = x ρ y ρ or xy) λ = x λ y λ 3) for all x,y, G. A loop G, ) is called an anti-automorphic inverse property loopaaipl) if it obeys the identity xy) ρ = y ρ x ρ or xy) λ = y λ x λ 4) for all x,y, G. A loop G, ) is called a semi-automorphic inverse property loopsaipl) if it obeys the identity xy x) ρ = x ρ y ρ x ρ or xy x) λ = x λ y λ x λ 5) for all x,y, G. 3

A loop satisfying the identical relation xy z)y = xyz y) 6) is called a right Bol loop Bol loop). A loop satisfying the identical relation x yx)z = xy xz) 7) is called a left Bol loop. A loop Q, ) is called a middle Bol if it satisfies the identity xyz\x) = x/z)y\x) 8) It is known that the identity 8) is universal under loop isotopy and that the universality of 8) implies the power associativity of the middle Bol loops Belousov [1]). Furthermore, 8) is a necessary and sufficient condition for the universality of the anti-automorphic inverse property Syrbu [23]). Middle Bol loops were originally introduced in 1967 by Belousov [1] and were later considered in 1971 by Gwaramija [10], who proved that a loop Q, ) is middle Bol if and only if there exists a right Bol loop Q, ) such that x y = y xy 1 )y, for every x,y Q. 9) This result of Gwaramija [10] is formally stated below: Theorem 1.1. If Q, ) is a left right) Bol loop then the groupoid Q, ), where x y = yy 1 x y) respectively, x y = y xy 1 )y), for all x,y Q, is a middle Bol loop and, conversely, if Q, ) is a middle Bol loop then there exists a leftright) Bol loop Q, ) such that x y = yy 1 x y) respectively, x y = y xy 1 )y), for all x,y Q. Remark 1.1. Theorem 1.1 implies that if Q, ) is a left Bol loop and Q, ) is the corresponding middle Bol loop then x y = x/y 1 and x y = x//y 1, where / // ) is the right division in Q, ) respectively, in Q, )). Similarly, if Q, ) is a right Bol loop and Q, ) is the corresponding middle Bol loop then x y = y 1 \y and x y = y//x 1, where \ // ) is the left right) division in Q, ) respectively, in Q, )). Hence, a middle Bol loops are isostrophs of left and right Bol loops. If Q, ) is a middle Bol loop and Q, ) is the corresponding left Bol loop, then Q, ), where x y = y x, for every x,y Q, is the corresponding right Bol loop for Q, ). So, Q, ) is a left Bol loop, Q, ) is a right Bol loop and for every x,y Q. x y = yy 1 x y) = [y x y 1 )] y, After then, middle Bol loops resurfaced in literature not until 1994 and 1996 when Syrbu [21, 22] considered them in-relation to the universality of the elasticity law. In 2003, Kuznetsov [25], while studying gyrogroups a special class of Bol loops) established some algebraic properties of middle Bol loop and designed a method of constructing a middle Bol loop from a gyrogroup. According to Gwaramija [10], in a middle Bol loop Q, ) with identity element e, the following are true. 4

1. The left inverse element x λ and the right inverse x ρ to an element x Q coincide : x λ =x ρ. 2. If Q,,e) is a left Bol loop and / is the right inverse operation to the operation, then the operation x y = x/y 1 is a middle Bol loop Q,,e), and every one middle Bol loop can be obtained in a similar way from some left Bol loop. These confirm the observations of earlier authors mentioned above. In 2010, Syrbu [23] studied the connections between structure and properties of middle Bol loops and of the corresponding left Bol loops. It was noted that two middle Bol loops are isomorphic if and only if the corresponding left right) Bol loops are isomorphic, and a general form of the autotopisms of middle Bol loops was deduced. Relations between different sets of elements, such as nucleus, left right,middle) nuclei, the set of Moufang elements, the center, e.t.c. of a middle Bol loop and left Bol loops were established. In 2012, Grecu and Syrbu [8] proved that two middle Bol loops are isotopic if and only if the corresponding right left) Bol loops are isotopic. They also proved that a middle Bol loop Q, ) is flexible if and only if the corresponding right Bol loop Q, ) satisfies the identity yx) 1 x 1 y 1) 1 x = x. In 2012, Drapal and Shcherbacov [5] rediscovered the middle Bol identities in a new way. In 2013, Syrbu and Grecu [24] established a necessary and sufficient condition for the quotient loops of a middle Bol loop and of its corresponding right Bol loop to be isomorphic. In 2014, Grecu and Syrbu [9] established: 1. that the commutant centrum) of a middle Bol loop is an AIP-subloop and 2. a necessary and sufficient condition when the commutant is an invariant under the existing isostrophy between middle Bol loop and the corresponding right Bol loop. In 1994, Syrbu [21], while studying loops with universal elasticity xy x = x yx) established a necessary and sufficient condition xy/z)b\xz) = xb\[by/z)b\xz)]) for a loop Q,,\,/) to be universally elastic. Furthermore, he constructed some finite examples of loops in which this condition and the middle Bol identity xyz\x) = x/z)y\x) are equivalent, and then posed an open problem of investigating if these two identities are also equivalent in all other finite loops. In 2012, Drapal and Shcherbacov [5] reported that Kinyon constructed a non-flexible middle Bol loop of order 16. This necessitates a reformulation of the Syrbu s open problem. Although the above authors also reported that Kinyon reformulated the Syrbu s open problem as follows: Let Q be a loop such that every isotope of Q is flexible and has the AAIP. Must Q be a middle Bol loop? This study prepares the ground for different reformulation of Syrbu s open problem based on the fact that the algebraic properties and structural properties of middle Bol loops have been studied in the past relative to their corresponding right left) Bol loop. Our envisioned reformulation of the equivalence of the universal elasticity condition UEC) and the middle Bol identity MBI) is by searching for an additional identity AI) such that UEC = MBI+AI. In this work, we prepare a good ground to reformulate Syrbu s question: 5

1. by establishing some new algebraic properties of a middle Bol loop; 2. by investigating the relationship between a middle Bol loop and some inverse property loops like WIPLs, CIPLs, AIPLs, SAIPLs, RIPLs and IPLs; 3. by establishing necessary and sufficient conditions) for a middle Bol loop to be a Moufang loop or an extra loop or a group. Definition 1.4. Let Q, ) be a loop and let w 1 q 1,q 2,,q n ) and w 2 q 1,q 2,,q n ) be words in terms of variables q 1,q 2,,q n of the loop Q with equal lengths NN N, N > 1) such that the variables q 1,q 2,,q n appear in them in equal number of times. Q is called a N m 1,m 2,,m n w 1 r 1,r 2,,r n)=w 2 r 1,r 2,,r loop if it obeys the identity w n) 1q 1,q 2,,q n ) = w 2 q 1,q 2,,q n ) where m 1,m 2,,m n N represent the number of times the variables q 1,q 2,,q n Q respectively appear in the word w 1 or w 2 such that the mappings q 1 r 1,q 2 r 2,,q n r n are assumed, r 1,r 2, r n N. Remark 1.2. The notation in Definition 1.4 was used in the study of the universality of Osborn loops in Jaiyéọlá and Adéníran [12] when N=4. In Phillips [17], the case when N=5 surfaced in the characterization of WIP power-associative conjugacy closed loops with the two identities: LWPC-xy x)xz) = xyx x)z) and RWPC-zx)x yx) = zx xy))x. Kinyon et. al. [13] introduced two classes of loops that generalize Moufang and Steiner loop, namely: RIF loop-this is an IPL that obeys the identity xy)z xy) = x yz)x y; and WRIF loop-this is a flexible loop that satisfies the identities W 1 : zx)yxy) = zxyx) y and W 2 : yxy)xz) = y xyx)z. They showed that a WRIF loop is a dissociative loop and a RIF is a WRIF loop. It clear that these two loops are described by identities of the type N=5. In 1968, Fenyves [6] obtained sixty identities of Bol-Moufang type. These identities have four variables on each side of the equations in the same order with one element repeating itself. Fenyves [6], Kinyon and Kunen [14], and Phillips and Vojtěchovský [18] found some of these identities to be equivalent to associativity in loops) and others to describe extra, Bol, Moufang, central, flexible loops. Some of these sixty identities are given below following the labelling in Fenyves [6]. F 1 : xy zx = xy z)x Associativity) F 2 : xy zx = x yz)x Moufang identity) F 3 : xy zx = xy zx) Associativity) F 4 : xy zx = xyz x) Moufang identity) F 11 : xy xz = xy x)z Associativity) F 12 : xy xz = x yx)z Associativity) F 13 : xy xz = xyx z) extra identity) F 14 : xy xz = xy xz) Associativity) F 21 : yx zx = yx z)x Associativity) F 22 : yx zx = y xz)x extra identity) 6

F 23 : yx zx = yxz x) Associativity) F 24 : yx zx = yx zx) Associativity) F 31 : yx xz = yx x)z Associativity) F 32 : yx xz = y xx)z Associativity) F 33 : yx xz = yxx z) Associativity) F 34 : yx xz = yx xz) Associativity) 2 Main Results Lemma 2.1. Let Q,,\,/) be a middle Bol loop. Then a) yz) ρ = z λ y ρ and z ρ = z λ i.e. Q, ) is an AAIPL. b) yx\x = x\y\x). c) yx)u = x yxu) = x and R u L y = I I = L y R u. d) xz\x = x\x/z). e) xz)u = x xu)z = x and R z R u = I R u R z = I. f) xz\x) = x/z)x. g) xx = x/z)z λ \x),xx = x/y ρ )y\x). h) x = 2 x/z) 1 = z 1 \x. Hence, Q,/) Q,\) ). i) x/yz)x = x/z)y\x). j) Q, ) is a CIPL iff Q, ) is a commutative WIPL iff Q, ) is a commutative IPL iff Q, ) is commutative LIPL iff Q, ) is commutative RIPL. Hence, Q, ) is a commutative Moufang loop. k) Q, ) is a SAIPL iff Q, ) is flexible. l) Q, ) is a AIPL iff Q, ) is commutative. Hence, Q, ) is an isostroph of a Bruck loop. m) The following are equivalent: 1. Q,/) Q,\). 2. xyx\x) = yyx\y). 3. x/yx)x = yyx\y). 4. xyx\x) = y/yx)y. 5. x/yx)x = y/yx)y. Proof. a) Since Q,,\,/) is a middle Bol loop, then xyz\x) = x/z)y\x). 10) Let x = e, then, eyz\e) = e/z)y\e). Let yz\e = u, then e = yz u = u = yz) ρ. Let e/z = v, then e = v z v = z λ and let y\e = w, then e = y w = w = y ρ. So yz\e) = e/z)y\e),= yz) ρ = z λ y ρ. Let y = e, then ez) ρ = z λ e ρ implies z ρ = z λ. 7

b) Put z = x in 10), then xyx\x) = x/x)y\x) = ey\x) xyx\x) = y\x. Thus, yx)\x = x\y\x). c) From b), let u = yx)\x yx) u = x yx)u = x. Let x\y\x) = u y\x = xu x = yx u). Then, yxu) = x R u L y = I. Also, yx)u = x L y R u = I. Therefore, yx)u = x yxu) = x and R u L y = I L y R u = I. d) Put y = x in 10), then xxz\x) = x/z)x\x) = x/z)e and xxz\x) = x/z. Therefore, xz\x = x\x/z). e) From d), let u = xz\x xz)u = x and let u = x\x/z) xu = x/z xu)z = x, that is xz)u = x xu)z = x. Then, R z R u = I R u R z = I. Therefore, R z R u = I R u R z = I. f) Put y = e in 10), then xez\x) = x/z)e\x) xz\x) = x/z)x. g) Put y = z λ in 10), then xz λ z\x) = x/z)z λ \x) xe\x) = x/z)z λ \x). h) Also, put z = y ρ in 10), then xyy ρ \x) = x/y ρ )y\x) xe\x) = x/y ρ )y\x). This implies that xx = x/y ρ )y\x). So, x/z)z λ \x) = x/y ρ )y\x). i) Assuming x 2 = e, then e = x/y ρ )y\x) e/y\x) = x/y ρ y\x) λ = x/y ρ, implies y\x) 1 = x/y 1. Likewise, assuming that x 2 = e, then e = x/z)z λ \x) x/z)\e = z λ \x), therefore, x/z) ρ = z λ \x, that is, x/z) 1 = z 1 \x x/z = z\x. x = 2 x/z) 1 = z 1 \x and x/z = z\x x/z = x\) z Q,/) Q,\) ). j) Again, in a MBL, CIP WIP and AIP IP and xy) 1 = x 1 y 1 IP and y 1 x 1 = x 1 y 1 IP and y 1 ) 1 x 1 ) 1 = x 1 ) 1 y 1 ) 1 IP and yx = xy IP and commutativity. k) SAIPL xy) x) ρ = x ρ y ρ )x ρ x 1 xy) 1 = x 1 y 1 )x 1 x 1 y 1 x 1 = x 1 y 1 )x 1 x 1 ) 1 y 1 ) 1 x 1 ) 1 = x 1 ) 1 y 1 ) 1 )x 1 ) 1 x yx = x y)x flexibility. l) xy = yx xy) 1 = yx) 1 xy) 1 = x 1 y 1 AIPL. m) From b) and d), y\x = xyx\x) and x/z = xxz\x). Thus, Q,/) Q,\) if and only if xyx\x) = yyx\y). The equivalence to the others follow from f). Lemma 2.2. Let Q,,\,/) be a middle Bol loop. Let f 1,g 1 : Q 2 Q. Then: 1. f 1 x,y) = yx\x f 1 x,y) = x\y\x); a) f 1 x,e) = e. b) f 1 x 1,e) = e. c) f 1 e,e) = e. d) f 1 e,x) = x 1. e) f 1 x,x) = x 1. f) f 1 x 1,x) = x 1. g) f 1 e,x 1 ) = x. h) f 1 x,x 1 ) = x. 8

2. g 1 x,y) = xy\x g 1 x,y) = x\x/y); a) g 1 x,e) = e. b) g 1 x 1,e) = e. c) g 1 e,e) = e. d) g 1 e,x) = x 1. e) g 1 x,x) = x 1. f) g 1 x 1,x) = x 1. g) g 1 e,x 1 ) = x. h) g 1 x,x 1 ) = x. 3. f 1 x,y) = g 1 x,y) Q, ) is commutative. 4. f 1 x,y) = g 1 x,y) Q,\) ) Q,/) Q,\) Q,/) ). 5. f 1 x,y) = g 1 x,y) yx\x = x\x/y) xy\x = x\y\x). 6. x = y x/y) y\x) y = x Proof. 1. From Lemma 2.1b), yx\x = x\y\x). So, f 1 x,y) = yx\x f 1 x,y) = x\y\x). 2. From Lemma 2.1d), xz\x = x\x/z). So, g 1 x,z) = xz\x g 1 x,z) = x\x/z). 3. Since f 1 x,y) = yx\x f 1 x,y) = x\y\x) and g 1 x,y) = xy\x g 1 x,y) = x\x/y), then, f 1 x,y) = g 1 x,y) yx\x = xy\x yx = xy Q, ) is commutative. 4. f 1 x,y) = g 1 x,y) x\y\x) = x\x/y) y\x = x/y y\x = x/y y\x = y/) x x\) y = x/y Q,\) ) Q,/) Q,\) Q,/) ). 5. f 1 x,y) = g 1 x,y) xy\x = x\x/y) and yx\x = x\y\x). By equating the LHS, we have xy\x = yx\x x\x/y) = x\y\x) x/y = y\x. f 1 x,y) = g 1 x,y) xy\x = x\x/y) yx\x = x\y\x). 6. Therefore, y\x = x/y x = y x/y) or y\x) y = x. Theorem 2.1. Let Q,,\,/) be a middle Bol loop and let f 1,g 1 : Q 2 Q and α i,β i : Q i Q be defined as: f 1 x,y) = yx\x or f 1 x,y) = x\y\x) and g 1 x,y) = xy\x or g 1 x,y) = x\x/y), The following are true. α i x 1,x 2,...,x i ) =...x 1 x 2 )x 3 )x 4 )...x i 1 )x i and β i x 1,x 2,...,x i ) = x 1 \x 2 \x 3 \ x i 2 \x i 1 \x i ) ))) i N. 1. f 1 x,αn y,x,x,...,x) ) = β n x,x,...,x,f1 x,y) ). 2. f 1 x,αn+1 x,y,x,x,...,x) ) = β n+1 x,x,x,...,x,g1 x,y) ). 9

3. Q, ) has the RAP if and only if f 1 x,y) = x[yx 2 )\x]. 4. Q, ) has the PRAP if and only if yx n β n x,x,...,x,f1 x,y) ) = x. 5. If Q, ) has the RAP, then Q, ) is of exponent 2 if and only if f 1 x,y) = xy\x). 6. If Q, ) has the PRAP, then Q, ) is of exponent n if and only if y β n x,x,...,x,f1 x,y) ) = x. Proof. 1. By Lemma 2.1b), yx\x = x\y\x) yx)r x = y\x)l x R x R x = R x L x R x = R x L x R 1 x 11) By equation 11) R 2 x = R x R x = R x L x R 1 x R x L x R 1 x = R x L 2 xr 1 x, R 3 x = R 2 xr x = R x L 2 xr 1 x R x L x R 1 x = R x L 3 xr 1 x, R 4 x = R xl 3 x R 1 R x L x R 1 x = R x L 4 x R 1 x. Therefore, we claim that: Rx n = R xlx n 1 R 1 x R xl x R 1 x = R x L n x R 1 x, n 0. Thus, for all y Q, yx x)x x)x )x\x = x\ x\x\y\x))) ) 12) }{{}}{{} n-times n 1)-times Equation 12) implies that f 1 x,αn y,x,x,...,x) ) = β n x,x,...,x,f1 x,y) ). 2. By Lemma 2.1d), xz\x = x\x/z) xz)r x = x/z)l x zl x R x = zl x L x L x R x = L x L x L x = L x L x R 1 x 13) By equation 11) and equation 13), L x R x = L x L x R 1 x R xl x R 1 x = L x L x L x R 1 x = L x L 2 x R 1 x. L x R 2 x = L xl 2 x R 1 x R xl x R 1 x = L x L 3 x R 1 x. L x R 3 x = L xl 3 x R 1 x R xl x R 1 x = L x L 4 x R 1 x. Therefore, L x Rx n = L x L x n+1) R 1 x, n 1. Thus, for all y Q, xy x)x x)x )x\x = x\ x\x\x/y))) ) 14) }{{}}{{} n-times n+1)-times Equation 14) implies that f 1 x,αn+1 x,y,x,x,...,x) ) = β n+1 x,x,x,...,x,g1 x,y) ). 3. This follows from 1. when n = 2. 4. This follows from 1. 10

5. This follows from 3. 6. This follows from 4. Lemma 2.3. Let Q,,\,/) be a loop. The following are equivalent. 1. Q,,\,/) be a middle Bol loop. 2. xyz\x) = x/z)y\x) for all x,y,z Q. 3. x/yz)x = x/z)y\x) for all x,y,z Q. Proof. From Lemma 2.1f), xz\x) = x/z)x. On another hand, if x/yz)x = x/z)y\x) is true, then xy\x) = x/y)x. So, 1., 2. and 3. are equivalent. Theorem 2.2. Let Q,,\,/) be a middle Bol loop and let f 1,g 1,f 2,g 2 : Q 2 Q be defined as: Then: f 1 x,y) = yx\x or f 1 x,y) = x\y\x) and g 1 x,y) = xy\x or g 1 x,y) = x\x/y), f 2 x,y) = x/xy) or f 2 x,y) = x/y)/x and g 2 x,y) = x/yx) or g 2 x,y) = y\x)/x. a) x/yx = y\x)/x. b) zyx) = x yzx) = x and L y L z = I L z L y = I. c) x/xz) = x/z)/x. d) yx)u = x yxu) = x and R u L y = I I = L y R u. e) f 2 x,y) = x/xy) f 2 x,y) = x/y)/x. f) g 2 x,y) = x/yx) g 2 x,y) = y\x)/x. g) The following are equivalent: 1. Q,/) Q,\). 2. [x/xy)]x = [y/xy)]y. 3. x[xy)\x] = [y/xy)]y. 4. [x/xy)]x = y[xy)\y]. 5. x[xy)\x] = y[xy)\y]. i) yx z = x xz = [x/yx)]x y xz = x. j) Q, ) is a CIPL if and only if xy 1 = [x/yx)]x. k) yx z = x xz = g 2 x,y) x y xz = x. l) Q, ) is a CIPL if and only if xy 1 = g 2 x,y) x. 11

m) z xy = x zx = x[xy)\x] zx y = x. n) Q, ) is a CIPL if and only if y 1 x = x[xy)\x]. o) z xy = x zx = x g 1 x,y). p) Q, ) is a CIPL if and only if y 1 x = x g 1 x,y). q) z yx = x zx = x[yx)\x] y zx = x. r) Q, ) is a LIPL if and only if y 1 x = x[yx)\x]. s) z yx = x zx = x f 1 x,y). t) Q, ) is a LIPL if and only if y 1 x = x f 1 x,y). u) xy z = x xz = [x/xy)]x. v) Q, ) is a RIPL if and only if xy 1 = [x/xy)]x. w) xy z = x xz = f 2 x,y) x. x) Q, ) is a RIPL if and only if xy 1 = f 2 x,y) x. Proof. This is achieved by using the identity in 3. of Lemma 2.3 i.e. x/yz)x = x/z)y\x) 15) thewaysinwhichtheidentity in2. oflemma2.3wasusedtoprovetheresultsinlemma2.1. a) Substitute z = x in 15). b) Use a). c) Substitute y = x in 15). d) Use c). e) Follows from c). f) Follows from a). g) Froma)andc), x\y = y/xy)y andx/z = x/xz)x. So, Q,\) Q,/) [x/xy)]x = [y/xy)]y. The equivalence to the others follows from Lemma 2.1f). i) Let z = yx\x, then yx z = x. So, xz = [x/yx)]x. Using Lemma 2.1c) in addition, yx z = x xz = [x/yx)]x y xz = x. j) Apply i). k) Use i). 12

l) Apply k). m) Let z = x/xy, then z xy = x. So, zx = x[xy)\x]. Using Lemma 2.1c) in addition, z xy = x zx = x[xy)\x] zx y = x. n) Apply m). o) Use m). p) Apply o). q) Let z = x/yx, then z yx = x. So, zx = x[yx)\x]. Using b) in addition, z yx = x zx = x[yx)\x] y zx = x. r) Apply q). s) Use q). t) Apply s). u) Let z = xy\x, then xy z = x. So, zx = x[yx)\x]. Using Lemma 2.1e) in addition, xy z = x xz = [x/xy)]x xz y = x. v) Apply u). w) Use u). x) Apply w)q, ) is a RIPL if and only if xy 1 = f 2 x,y) x. Lemma 2.4. Let Q,,\,/) be a middle Bol loop and let f 1,g 1,f 2,g 2 : Q 2 Q. 1. f 2 x,y) = x/xy) f 2 x,y) = x/y)/x; a) f 2 x,x) = f 2 e,x) = f 2 x 1,x) = x 1. b) f 2 x,x 1 ) = f 2 e,x 1 ) = x. c) f 2 x,e) = f 2 x 1,e) = f 2 e,e) = e. 2. g 2 x,y) = x/yx) g 2 x,y) = y\x)/x; a) g 2 x,x) = g 2 e,x) = g 2 x 1,x) = x 1. b) g 2 x,x 1 ) = g 2 e,x 1 ) = x. c) g 2 x,e) = g 2 x 1,e) = g 2 e,e) = e. 3. The following are equivalent: 13

a) f 2 x,y) = g 2 x,y). b) Q, ) is commutative. c) Q,\) ) Q,/). d) Q,\) Q,/) ). e) x/xy = y\x)/x. f) x/yx = x/y)/x. 4. The following are equivalent: a) f 1 x,y) = f 2 x,y). b) yx\x)xy) = x. c) yx)x/xy) = x. d) x\y\x) = x/y)/x. 5. The following are equivalent: a) g 1 x,y) = g 2 x,y). b) xy\x)yx) = x. c) xy)x/yx) = x. d) x\x/y) = y\x)/x. 6. The following are equivalent: a) f 1 x,y) = g 2 x,y). b) yx)x/yx) = x. c) yx\x)yx) = x. d) x[y\x)/x] = y\x. e) [y\x)/x]x = y\x. 7. The following are equivalent: a) f 2 x,y) = g 1 x,y). b) xy\x)xy) = x. c) yx\x)yx) = x. d) x[x/y)/x] = x/y. e) [x\x/y)]x = x/y. 8. f 2 x,y)f 1 x,z) = x [ zx)xy)\x ] = [ x/zx)xy) ] x. 9. [x/y)/x][x\z\x)] = x [ zx)xy)\x ] = [ x/zx)xy) ] x. 10. g 2 x,y)g 1 x,z) = x [ xz)yx)\x ] = [ x/xz)yx) ] x. 11. [ y\x)/x ][ x\x/z)] = x [ xz)yx)\x ] = [ x/xz)yx) ] x. 12. f 2 x,y)g 1 x,z) = x [ xz)xy)\x ] = [ x/xz)xy) ] x. 13. [ x/y)/x ][ x\x/z)] = x [ xz)xy)\x ] = [ x/xz)xy) ] x. 14. g 2 x,y)f 1 x,z) = x [ xz)yx)\x ] = [ x/xz)yx) ] x. 15. [ y\x)/x ][ x\z\x)] = x [ xz)yx)\x ] = [ x/xz)yx) ] x. Proof. Use Theorem 2.2 and the hypothetic definitions of f i,g i, i = 1,2. 14

Theorem 2.3. Let Q,,\,/) be a middle Bol loop and let f 2,g 2 : Q 2 Q and φ i,ψ i : Q i Q be defined as: f 2 x,y) = x/xy) or f 2 x,y) = x/y)/x and g 2 x,y) = x/yx) or g 2 x,y) = y\x)/x, The following are true. φ i x 1,x 2,...,x i ) = x i x i 1...x 5 x 4 x 3 x 2 x 1 ))))...)) and ψ i x 1,x 2,...,x i ) =...x 1 /x 2 )/x 3 )...)/x i 1 )/x i i N. 1. f 2 x,φn y,x,x,...,x) ) = ψ n f2 x,y),x,x,...,x ). 2. f 2 x,φn+1 x,y,x,x,...,x,x) ) = ψ n+1 g2 x,y),x,x,...,x ). 3. Q, ) has the LAP if and only if f 2 x,y) = [x/x 2 y)]x. 4. Q, ) has the PLAP if and only if ψ n f2 x,y),x,x,...,x ) x n y = x. 5. If Q, ) has the LAP, then Q, ) is of exponent 2 if and only if f 2 x,y) = x/y)x. 6. If Q, ) has the PLAP, then Q, ) is of exponent n if and only if ψ n f2 x,y),x,...,x ) y = x. Proof. This is very much similar to the proof of Theorem 2.1. 1. From the identity in Lemma 2.1c), we get L x = L x R x L 1 x 16) By equation 16), we claim that: L n x = L x R n xl 1 x, n 0. Thus, for all y Q, x/[x xxx xy))) ] = x/y)/x)/x)/x )/x }{{}}{{} n-times n-times 17) Equation 17) implies that f 2 x,φn y,x,x,...,x) ) = ψ n f2 x,y),x,x,...,x ). 2. From the identity in Lemma 2.1c), we get R x = R x R x L 1 x 18) Therefore, by equation 16) and equation 18), R x L n x L x = R x R n+1) x, n 1. Thus, for all y Q, x/[x xxx }{{} n-times yx))) ] = y\x)/x)/x)/x )/x }{{} n+1)-times Equation 19) implies that f 2 x,φn+1 x,y,x,x,...,x,x) ) = ψ n+1 g2 x,y),x,x,...,x ). 3. This follows from 1. when n = 2. 15 19)

4. This follows from 1. 5. This follows from 3. 6. This follows from 4. Theorem 2.4. Let Q,,\,/) be a middle Bol loop and let f 1,g 1,f 2,g 2 : Q 2 Q and α i,β i,φ i,ψ i : Q i Q be defined as: f 1 x,y) = yx\x or f 1 x,y) = x\y\x) and g 1 x,y) = xy\x or g 1 x,y) = x\x/y), f 2 x,y) = x/xy) or f 2 x,y) = x/y)/x and g 2 x,y) = x/yx) or g 2 x,y) = y\x)/x, α i x 1,x 2,...,x i ) =...x 1 x 2 )x 3 )x 4 )...x i 1 )x i, β i x 1,x 2,...,x i ) = x 1 \x 2 \x 3 \ x i 2 \x i 1 \x i ) ))), φ i x 1,x 2,...,x i ) = x i x i 1...x 5 x 4 x 3 x 2 x 1 ))))...)) and ψ i x 1,x 2,...,x i ) =...x 1 /x 2 )/x 3 )...)/x i 1 )/x i i N. 1. The following are equivalent. a) Q, ) is a group. b) x/y = [ f 2 x,y)f 1 x,z) ] /β 4 x,x,z,x). c) x/y = [ f 2 x,y)f 1 x,z) ] /β 2 φ3 x,x,z),x ). d) z\x = ψ 2 x,α3 x,x,y) ) \ [ f 2 x,y)f 1 x,z) ]. e) z\x = ψ 4 x,y,x,x)\ [ f 2 x,y)f 1 x,z) ]. f) α 3 x,z,y) g 2 x,y)g 1 x,z) = x. g) g 2 x,y)g 1 x,z) φ 3 x,z,y) = x. h) f 2 x,y)g 1 x,z) = α 2 f2 x,y),x ) β 2 x,g1 x,z) ). i) f 2 x,y)g 1 x,z) φ 3 x,y,z) = x. j) α 3 z,x,y) g 2 x,y)f 1 x,z) = x. k) g 2 x,y)f 1 x,z) = ψ 2 g2 x,y),x ) φ 2 f1 x,z),x ). 2. If Q, ) is of exponent 2, then Q, ) is a group if and only if x/y)z\x) = f 2 x,y)f 1 x,z). 3. If Q, ) is flexible, then Q, ) is a group if and only if f 2 x,y)g 1 x,z) = φ 2 x,f2 x,y) ) ψ 2 g2 x,z), ). 4. The following are equivalent. 16

a) Q, ) is a Moufang loop. b) φ 3 z,y,x) g 2 x,y)g 1 x,z) = x. c) g 2 x,y)g 1 x,z) α 3 y,z,x) = x. 5. The following are equivalent. a) Q, ) is an extra loop. b) f 2 x,y)g 1 x,z) α 3 z,x,y) = x. c) φ 3 y,x,z) g 2 x,y)f 1 x,z) = x. Proof. 1. a) b) Using F 31 and 8. of Lemma 2.4, Q, ) is a group if and only if f 2 x,y)f 1 x,z) = x [ zx x)y\x ] = x/y) [ zx x)\x ] = x/y) [ x\x\z\x)) ] x/y = [ f 2 x,y)f 1 x,z) ] /β 4 x,x,z,x). a) c) Using F 32 and 8. of Lemma 2.4, Q, ) is a group if and only if f 2 x,y)f 1 x,z) = x [ z xx)y\x ] = x/y) [ z xx)\x ] x/y = [ f 2 x,y)f 1 x,z) ] /β 2 φ3 x,x,z),x ). a) d) Using F 33 and 8. of Lemma 2.4, Q, ) is a group if and only if f 2 x,y)f 1 x,z) = x [ zxx y)\x ] = x/xx y) ) z x) z\x = ψ 2 x,α3 x,x,y) ) \ [ f 2 x,y)f 1 x,z) ]. a) e) Using F 34 and 8. of Lemma 2.4, Q, ) is a group if and only if f 2 x,y)f 1 x,z) = x [ zx xy)\x ] = x/x xy) ) z x) = [ x/y)/x ) /x ] z x) z\x = ψ 4 x,y,x,x)\ [ f 2 x,y)f 1 x,z) ]. a) f) Using F 1 and 10. of Lemma 2.4, Q, ) is a group if and only if g 2 x,y)g 1 x,z) = x [ xz y)x\x ] = xz y)\x α 3 x,z,y) g 2 x,y)g 1 x,z) = x. a) g) Using F 3 and 10. of Lemma 2.4, Q, ) is a group if and only if g 2 x,y)g 1 x,z) = x [ xy zx)\x ] = x/y zx) g 2 x,y)g 1 x,z) φ 3 x,z,y) = x. a) h) Using F 11 and 12. of Lemma 2.4, Q, ) is a group if and only if f 2 x,y)g 1 x,z) = x [ xz x)y\x ] = x/y) [ xz x)\x ] = x/y) [ x\x\x/z))) ] f 2 x,y)g 1 x,z) = f 2 x,y) x ) x g 1 x,z) ) f 2 x,y)g 1 x,z) = α 2 f2 x,y),x ) β 2 x,g1 x,z) ). 17

a) i) Using F 14 and 12. of Lemma 2.4, Q, ) is a group if and only if f 2 x,y)g 1 x,z) = x [ xzx y)\x ] = x/z xy) f 2 x,y)g 1 x,z) φ 3 x,y,z) = x. a) j) Using F 21 and 14. of Lemma 2.4, Q, ) is a group if and only if g 2 x,y)f 1 x,z) = x [ zx y)x\x ] = zx y\x) α 3 z,x,y) g 2 x,y)f 1 x,z) = x. a) k) Using F 24 and 14. of Lemma 2.4, Q, ) is a group if and only if g 2 x,y)f 1 x,z) = x [ zx yx)\x ] = [ x/x yx) ] z\x) = [ y\x)/x ) /x ] z\x) g 2 x,y)f 1 x,z) = g 2 x,y)/x ) x f 1 x,z) ) g 2 x,y)f 1 x,z) = ψ 2 g2 x,y),x ) φ 2 f1 x,z),x ). 2. Apply 1.c) 3. Using F 23 and 14. of Lemma 2.4, if Q, ) is flexible, then Q, ) is a group if and only if g 2 x,y)f 1 x,z) = x [ zxy x)\x ] = [ x/xy x) ] z\x) = [ x/ x yx) ] z\x) g 2 x,y)f 1 x,z) = [ y\x)/x ) /x ] z\x) g 2 x,y)f 1 x,z) = g 2 x,y)/x ) x f 1 x,z) ) g 2 x,y)f 1 x,z) = ψ 2 g2 x,y),x ) φ 2 f1 x,z),x ). 4. a) b) Using F 2 and 10. of Lemma 2.4, Q, ) is a Moufang loop if and only if g 2 x,y)g 1 x,z) = x [ x yz)x\x ] = x yz)\x φ 3 z,y,x) g 2 x,y)g 1 x,z) = x. a) c) Using F 4 and 10. of Lemma 2.4, Q, ) is a Moufang loop if and only if g 2 x,y)g 1 x,z) = x [ xyz x)\x ] = x/yz x) g 2 x,y)g 1 x,z) α 3 y,z,x) = x. 5. a) b) Using F 13 and 12. of Lemma 2.4, Q, ) is an extra loop if and only if f 2 x,y)g 1 x,z) = x [ xzx y)\x ] = x/zx y) f 2 x,y)g 1 x,z) α 3 z,x,y) = x. 18

a) c) Using F 22 and 14. of Lemma 2.4, Q, ) is an extra loop if and only if g 2 x,y)f 1 x,z) = x [ z xy)x\x ] = z xy) φ 3 y,x,z) g 2 x,y)f 1 x,z) = x. We shall now establish some necessary and sufficient conditions for some identities of the typen=3,4,5,6 to be true in a middle loop. Of course, these identities are obviously true in a dissociative loop, hence, a RIF or WRIF loop has them. Theorem 2.5. Let Q,,\,/) be a middle Bol loop and let g 1 : Q 2 Q be defined as: g 1 x,y) = xy\x or g 1 x,y) = x\x/y). 1. Q, ) is a3 2,1 12 1=1 21 loop if and only if g 1 x,y) = x g 1 x,yx). 2. Q, ) is a4 3,1 12 1)1=1 21 1) loop if and only if g 1x,y) = x x g 1 x,yx x) ). 3. Q, ) is a4 3,1 12 1)1=1 2 11) loop if and only if g 1x,y) = x x g 1 x,y xx) ). 4. If Q, ) is a3 1,2 12 2=1 22 loop, the following are equivalent: a) Q, ) is a4 3,1 12 1)1=1 21 1) loop. b) Q, ) is a4 3,1 12 1)1=1 2 11) loop. c) Q, ) is a4 3,1 12 11=1 2 11) loop. Proof. We shall often use Equation 14). 1. Q, ) is a3 2,1 12 1=1 21 loop if and only if xy x = x yx xy x)\x = x yx)\x x\x\x/y)) = x yx)\x g 1 x,y) = x g 1 x,yx). 2. Q, ) is a4 3,1 12 1)1=1 21 1) loop if and only if xy x)x = x yx x) [xy x)x]\x = [x yx x)]\x x\x\x\x/y))) = [x yx x)]\x g 1 x,y) = x x g 1 x,yx x) ). 3. Q, ) is a4 3,1 12 1)1=1 2 11) loop if and only if xy x)x = x y xx) xy x)x\x = x y xx)\x x\x\x\x/y))) = g 1 x,y xx) g 1 x,y) = x x g 1 x,y xx) ). 4. This is achieved by assuming the hypothesis that Q, ) is a 3 1,2 12 2=1 22 loop and using 2. and 3.. 19

Theorem 2.6. Let Q,,\,/) be a middle Bol loop and let g 1 : Q 2 Q be defined as: g 1 x,y) = xy\x or g 1 x,y) = x\x/y). 1. Q, ) is a5 4,1 12 1)1 1=1 21 1)1 loop if and only if g 1x,y) = x [ x x g 1 x,yx x)x) )]. 2. Q, ) is a5 4,1 12 1)1 1=1 21 11) loop if and only if g 1x,y) = x [ x x g 1 x,yx xx) )]. 3. Q, ) is a5 4,1 12 1)1 1=1 2 11)1 loop if and only if g 1x,y) = x [ x x g 1 x,y xx)x) )]. 4. The following are equivalent: a) Q, ) is a5 4,1 12 1)1 1=1 211 1) loop. b) Q, ) is a5 4,1 12 1)1 1=1 21 11) loop. c) Q, ) is a5 4,1 12 1)1 1=1 2111) loop. d) g 1 x,y) = x [ x x g 1 x,yx 3 ) )]. 5. If Q, ) is a3 1,2 12 2=1 22 loop, then the following are equivalent: a) Q, ) is a5 4,1 12 1)1 1=1 21 1)1 loop. b) Q, ) is a5 4,1 12 1)1 1=1 21 11) loop. c) Q, ) is a5 4,1 12 1)1 1=1 2 11)1 loop. 6. If Q, ) is a3 1,3 1 22)2=1 22 2) a) Q, ) is a5 4,1 12 1)1 1=1 2 11)1 loop. b) Q, ) is a5 4,1 12 1)1 1=1 211 1) loop. 7. If Q, ) is a3 1,3 12 22=1 2 22) loop, then the following are equivalent: loop, the following are equivalent: c) Q, ) is a5 4,1 12 1)1 1=1 21 11) loop. a) Q, ) is a5 4,1 12 1)1 1=1 21 11) loop. b) Q, ) is a5 4,1 12 1)1 1=1 2 11)1 loop. c) Q, ) is a5 4,1 12 1)1 1=1 211 1) loop. 8. If Q, ) is a3 1,2 12 2=1 22 loop,3 1,3 1 22)2=1 22 2) loop and31,3 12 22=1 2 22) loop, then the following are equivalent: a) Q, ) is a5 4,1 12 1)1 1=1 21 1)1 loop. b) Q, ) is a5 4,1 12 1)1 1=1 21 11) loop. c) Q, ) is a5 4,1 12 1)1 1=1 2 11)1 loop. d) Q, ) is a5 4,1 12 1)1 1=1 211 1) loop. e) Q, ) is a5 4,1 12 1)1 1=1 21 11) loop. f) Q, ) is a5 4,1 12 111=1 2111) loop. 9. Q, ) is a6 5,1 [ ] [ ] 12 1)1 1 1=1 21 1)1 1 loop if and only if g 1 x,y) = x x [ x x g 1 x,yx x)x x) )]. 20

Proof. This is similar to the proof of Theorem 2.5. Theorem 2.7. Let Q,,\,/) be a middle Bol loop and let g 2 : Q 2 Q be defined as: g 2 x,y) = x\yx or g 2 x,y) = y\x)/x. 1. Q, ) is a3 2,1 12 1=1 21 loop if and only if g 2 x,y) = g 2 x,xy) x. 2. Q, ) is a4 3,1 1 1 21)=1 12)1 loop if and only if g 2x,y) = g 2 x,x xy)x x. 3. Q, ) is a4 3,1 1 1 21)=11 2)1 loop if and only if g 2x,y) = g 2 x,xx y)x x. 4. If Q, ) is a3 2,1 11 2=1 12 loop, then the following are equivalent: a) Q, ) is a4 3,1 1 12)1=1 1 21) loop. b) Q, ) is a4 3,1 11 2)1=1 1 21) loop. c) Q, ) is a4 3,1 11 21=11 2)1 loop. Proof. This is similar to the proof of Theorem 2.5 with the aid of Equation 19). Theorem 2.8. Let Q,,\,/) be a middle Bol loop and let g 1 : Q 2 Q be defined as: g 1 x,y) = xy\x or g 1 x,y) = x\x/y). 1. Q, ) is a5 4,1 1 11 21)=11 12) 1 loop if and only if g 2x,y) = g 2 x,xx xy))x x ) x. 2. Q, ) is a5 4,1 1 11 21)=11 12)1 loop if and only if g 2x,y) = g 2 x,xx xy)x x ) x. 3. Q, ) is a5 4,1 1 11 21)=111 12) 1 loop if and only if g 2x,y) = g 2 x,xxx y))x x ) x. 4. The following are equivalent: a) Q, ) is a5 4,1 1 11 21)=1 11)2 1 loop. b) Q, ) is a5 4,1 1 11 21)=11 1)2 1 loop. c) Q, ) is a5 4,1 1 11 21)=111)2 1 loop. d) g 2 x,y) = g 2 x,x 3 y))x x ) x. 5. If Q, ) is a3 2,1 1 12=11 2 loop, then the following are equivalent: a) Q, ) is a5 1 11 21)=11 12) 1 loop. c) Q, ) is a5 4,1 b) Q, ) is a5 4,1 1 11 21)=11 12)1 loop. 6. If Q, ) is a3 3,1 111 2)2=1 11)2 loop, then the following are equivalent: 1 11 21)=111 12) 1 loop. a) Q, ) is a5 4,1 1 11 21)=111 2) 1 loop. b) Q, ) is a5 4,1 1 11 21)=1 11)2 1 loop. c) Q, ) is a5 4,1 1 11 21)=11 1)2 1 loop. 7. If Q, ) is a3 3,1 11 12=11 1)2 loop, the following are equivalent: 21

a) Q, ) is a5 4,1 1 11 21)=11 12)1 loop. b) Q, ) is a5 4,1 1 11 21)=111 2) 1 loop. c) Q, ) is a5 4,1 1 11 21)=1 11)2 1 loop. 8. If Q, ) is a3 2,1 are equivalent: 1 12=11 2 loop,33,1 111 2)2=1 11)2 loop and33,1 11 12=11 1)2 loop, then the following a) Q, ) is a5 4,1 1 11 21)=11 12) 1 loop. b) Q, ) is a5 4,1 1 11 21)=11 12) 1) loop. c) Q, ) is a5 4,1 1 11 21)=111 2) 1 loop. d) Q, ) is a5 4,1 1 11 21)=1 11)2 1) loop. e) Q, ) is a5 4,1 1 11 21)=11 1)2 1 loop. f) Q, ) is a5 4,1 111 21=111)2 1 loop. 9. Q, ) is a6 5,1 1[1 11 21)]=1[11 12)] 1 loop if and only if g 2 x,y) = [[[g 2 x,yx xxx xy))))x ]x]x]x. Proof. This is similar to the proof of Theorem 2.5. References [1] Belousov, V. D. 1967), Foundations of the theory of quasigruops and loops,russian) Nauka, Moscow. [2] Bruck, R. H. 1966), A survey of binary systems, Springer-Verlag, Berlin-Göttingen- Heidelberg, 185pp. [3] Chein, O., Pflugfelder, H. O. and Smith, J. D. H. 1990), Quasigroups and loops : Theory and applications, Heldermann Verlag, 568pp. [4] Dene, J. and Keedwell, A. D. 1974), Latin squares and their applications, the English University press Lts, 549pp. [5] Drapal, A. and Shcherbacov, V. 2012), Identities and the group of isostrophisms, Comment. Math. Univ. Carolin. 533), 347 374. [6] Fenyves F. 1968), Extra Loops II, Publ. Math. Debrecen, 15, 235 238. [7] Goodaire, E. G., Jespers, E. and Milies, C. P. 1996), Alternative loop rings, NHMS184), Elsevier, 387pp. [8] Grecu, I. and Syrbu, P. 2012), On Some Isostrophy Invariants Of Bol Loops, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 554), 145 154. [9] Grecu, I. and Syrbu, P. 2014), Commutants of middle Bol loops, Quasigroups and Related Systems, 22, 81 88. 22

[10] Gwaramija, A.1971), On a class of loops, Uch. Zapiski MGPL. 375, 25 34.Russian) [11] Jaiyeola, T. G. 2009), A study of new concepts in smarandache quasigroups and loops, ProQuest Information and LearningILQ), Ann Arbor, USA, 127pp. [12] Jaiyéọlá, T. G. and Adéníran J. O. 2009), New identities in universal Osborn loops, Quasigroups And Related Systems, Vol. 17, No. 1, 55 76. [13] Kinyon, M. K., Kunen K. and Phillips, J. D. 2002), A generalization of Moufang and Steiner loops, Algebra Universalis 48, No. 1, 81 101. [14] Kinyon, M. K., Kunen K. 2004), The structure of extra loops, Quasigroups and Related Systems 12, 39 60. [15] Kuznetsov, E.2003), Gyrogroups and left gyrogroups as transversals of a special kind, Algebraic and discrete Mathematics 3, 54 81. [16] Pflugfelder, H. O. 1990), Quasigroups and loops : Introduction, Sigma series in Pure Math. 7, Heldermann Verlag, Berlin, 147pp. [17] Phillips, J. D. 2006), A short basis for the variety of WIP PACC-loops, Quasigroups Related Systems 14, No. 1, 73 80. [18] Phillips, J. D. and Vojtěchovský, P. 2005), The varieties of loops of Bol-Moufang type, Alg. Univer. 354), 259 383. [19] Sabinin, L. V. 1999), Smooth quasigroups and loops, Kluver Academic Publishers, Dordrecht, 249pp. [20] Smith, J. D. H. 2007), An introduction to quasigroups and their representations, Taylor and Francis Group, LLC. [21] Syrbu, P. 1994), Loops with universal elasticity, Quasigroups Related Systems 1, 57 65. [22] Syrbu, P. 1996), On loops with universal elasticity, Quasigroups Related Systems 3, 41 54. [23] Syrbu, P. 2010), On middle Bol loops, ROMAI J. 6,2, 229 236. [24] Syrbu, P. and Grecu, I. 2013), On some groups related to middle Bol loops, Revistǎ Ştiinţificǎ a Universitǎţii de Stat din Moldova, 767), 10 18. [25] Vasantha Kandasamy, W. B. 2002), Smarandache loops, Department of Mathematics, Indian Institute of Technology, Madras, India, 128pp. 23