Georgia Standards of Excellence Curriculum Map. Mathematics. Accelerated GSE Pre-Calculus

Similar documents
Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Pre-Calculus

Cherokee County School District Year-Long Curriculum Map GSE Pre-Calculus 1 st Semester 2 nd Semester

SCOPE AND SEQUENCE CHART

Precalculus Graphical, Numerical, Algebraic 9 th Edition, 2015

Precalculus Graphical, Numerical, Algebraic Common Core Edition, 2013

Chapter Lessons Standards Classical Methodologies

Pre-Calculus Common Core Overview. Represent and model with vector quantities. (+) N.VM.1, 2, 3

Georgia Standards of Excellence Mathematics

Mathematics High School Advanced Mathematics Plus Course

PRECALCULUS. Changes to the original 2010 COS is in red. If it is red and crossed out, it has been moved to another course.

Grade 12- PreCalculus

3. (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

30. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. [F-TF]

Precalculus. Represent complex numbers and their operations on the complex plane.

Mathematics Standards for High School Advanced Quantitative Reasoning

CCGPS Curriculum Map. Mathematics. CCGPS Advanced Algebra

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra II/Advanced Algebra

Pre-Calculus & Trigonometry Scope and Sequence

CCGPS Curriculum Map. Mathematics. CCGPS Analytic Geometry

Unit Activity Correlations to Common Core State Standards. Precalculus. Table of Contents

Precalculus. Precalculus Higher Mathematics Courses 85

Algebra 2 (3 rd Quad Expectations) CCSS covered Key Vocabulary Vertical

Algebra 2 (4 th Quad Expectations) Chapter (McGraw-Hill Algebra 2) Chapter 10 (Suggested Pacing 13 Days)

Algebra II. Algebra II Higher Mathematics Courses 77

Mathematics Standards for High School Financial Algebra A and Financial Algebra B

Mathematics Standards for High School Precalculus

California Common Core State Standards for Mathematics Standards Map Mathematics III

Algebra II Introduction 1

Linear Equations and Inequalities: The Poetry and Prose of Algebra

High School Mathematics Math IV

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra I

Mathematics High School Mathematics IV Trigonometry/Pre-calculus

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra I

Course Outlines. Name of the course: International Baccalaureate Math HL. Course description: Essential Questions:

Trimester 1 Expectations CCSS covered Key Vocabulary Vertical Alignment

Livingston American School 4TH Quarter Lesson Plan

A.CED.1.4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Achieve Recommended Pathway: Algebra II

Common Core Georgia Performance Standards: Curriculum Map 1 st Semester 2 nd Semester

Mathematics Standards for High School Algebra II

Algebra 2 for Pre-Calculus (#9300)

CCSS covered Key Vocabulary Vertical Alignment. Chapter (McGraw-Hill Algebra 2)

Honors Precalculus Yearlong Mathematics Map

Utah Core State Standards for Mathematics Precalculus

Trimester 2 Expectations. Chapter (McGraw-Hill. CCSS covered Key Vocabulary Vertical. Alignment

Pre-Calculus & Trigonometry Scope and Sequence

Traditional Pathway: Algebra II

Algebra II Mathematics N-CN The Complex Number System

hmhco.com Adaptive. Intuitive. Transformative. AGA Scope and Sequence

Alabama Course of Study: Mathematics Precalculus

AMSCO Algebra 2. Number and Quantity. The Real Number System

High School Mathematics Standards. Number and Quantity

GSE Algebra I Curriculum Map 1 st Semester 2 nd Semester

Integrated Mathematics I, II, III 2016 Scope and Sequence

Lee County Schools Curriculum Road Map Algebra 2

Randolph County Curriculum Frameworks Algebra II with Trigonometry

Tennessee s State Mathematics Standards Precalculus

Common Core State Standards. What is the goal of the Common Core State Standards?

Common Core State Standard (+) indicates Advanced Standards Math 1

The New York Common Core Learning Standards for Mathematics: High School

Georgia Standards of Excellence Curriculum Map. Mathematics. Accelerated GSE Geometry B / Algebra II

Common Core State Standards. Clusters and Instructional Notes Perform arithmetic operations with complex numbers. 5.6

Math Common Core State Standards and Long-Term Learning Targets High School Algebra II

Standards-Based Learning Power Standards. High School- Algebra

MATH - Fourth Course

Curriculum Scope & Sequence

Common Core State Standards for Mathematics Integrated Pathway: Mathematics III

Math Analysis Curriculum Map Kennett High School

High School Modeling Standards

WHCSD Grade Content Area

Cumberland County Schools

Algebra 2 Math-at-a-Glance

Pacing Guide for 7-12 Curriculum. Week Chapter & Lesson COS Objectives

Algebra 2 and Mathematics 3 Critical Areas of Focus

Fairfield Public Schools

Tennessee s State Mathematics Standards - Algebra II

Mathematics - High School Algebra II

Algebra II Pacing Guide Last Updated: August, Guiding Question & Key Topics

SBAC Content Specifications for the Summative Assessment for the Common Core State Standards for Mathematics (June 2013) for High School

Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks Mathematics Algebra 2

Algebra II Curriculum Crosswalk

Math II. Number and Quantity The Real Number System

Common Core Georgia Performance Standards CCGPS Mathematics

Precalculus P. Precalculus includes the following domains and clusters:

Pearson Mathematics Algebra 2 Common Core 2015

Pearson Georgia High School Mathematics

MATH III CCR MATH STANDARDS

The Standard of Mathematical Practices

Pre-Calculus EOC Review 2016

Common Core Georgia Performance Standards CCGPS Mathematics

Correlation to the Common Core State Standards for Mathematics Algebra 2. Houghton Mifflin Harcourt Algerbra

are doubled. 8 (+) Perform operations on matrices and use matrices in applications. Add, subtract, and multiply matrices of appropriate dimensions.

Utah Integrated High School Mathematics Level III, 2014

Math 3 Unit Skills Checklist

1.9 CC.9-12.A.REI.4b graph quadratic inequalities find solutions to quadratic inequalities

Common Core State Standards for Mathematics

WA State Common Core Standards - Mathematics

1-3 weeks Introduction to Algebra II- The Purpose and Predictability of Patterns (15)

COMMON CORE State STANDARDS FOR MATHEMATICS HIGH SCHOOL ALGEBRA

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION ALGEBRA II WITH TRIGONOMETRY 2003 ACOS 2010 ACOS

Transcription:

Georgia Standards of Excellence Curriculum Map Mathematics Accelerated GSE Pre-Calculus These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.

Georgia Department of Education Accelerated GSE Pre-Calculus Curriculum Map 1 st Semester 2 nd Semester Unit 1 Introduction to MGSE9-12.F.IF.4 MGSE9-12.F.IF.7 MGSE9-12.F.IF.7e MGSE9-12.F.TF.1 MGSE9-12.F.TF.2 MGSE9-12.F.TF.5 MGSE9-12.F.TF.8 Unit 2 MCC9-12.F.BF.4 MCC9-12.F.BF.4d MCC9-12.F.TF.3 MCC9-12.F.TF.4 MCC9-12.F.TF.6 MCC9-12.F.TF.7 Unit 3 Trigonometry of General Triangles CC.9-12.G.SRTT.9 CC.9-12.G.SRTT.10 CC.9-12.G.SRTT.11 Unit 4 (2 3 weeks) Identities MCC9-12.F.TF.9 Unit 5 (4 5 weeks) Unit 6 (2 3 weeks) Unit 7 (4 5 weeks) Unit 8 Matrices Conics Vectors Inferences & Conclusions from Data MCC9-12.N.VM.6 MCC9-12.N.VM.7 MCC9-12.N.VM.8 MCC9-12.N.VM.9 MCC9-12.N.VM.10 MCC9-12.N.VM.12 MCC9-12.A.REI.8 MCC9-12.A.REI.9 MCC9-12.G.GPE.2 MCC9-12.G.GPE.3 MCC9-12.A.REI.7 MCC9-12.N.CN.3 MCC9-12.N.CN.4 MCC9-12.N.CN.5 MCC9-12.N.CN.6 MCC9-12.N.VM.1 MCC9-12.N.VM.2 MCC9-12.N.VM.3 MCC9-12.N.VM4 MCC9-12.N.VM4a MCC9-12.N.VM4b MCC9-12.N.VM4c MCC9-12.N.VM.5 MCC9-12.N.VM.5a MCC9-12.N.VM.5b MCC9-12.N.VM.11 MGSE9-12.S.ID.2 MGSE9-12.S.ID.4 MGSE9-12.S.IC.1 MGSE9-12.S.IC.2 MGSE9-12.S.IC.3 MGSE9-12.S.IC.4 MGSE9-12.S.IC.5 MGSE9-12.S.IC.6 Unit 9 Probability MCC9-12.S.CP.8 MCC9-12.S.CP.9 MCC9-12.S.MD.1 MCC9-12.S.MD.2 MCC9-12.S.MD.3 MCC9-12.S.MD.4 MCC9-12.S.MD.5 MCC9-12.S.MD.5a MCC9-12.S.MD.5b MCC9-12.S.MD.6 MCC9-12.S.MD.7 These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units. All units will include the Mathematical Practices and indicate skills to maintain. *Revised standards indicated in bold red font. NOTE: Mathematical standards are interwoven and should be addressed throughout the year in as many different units and tasks as possible in order to stress the natural connections that exist among mathematical topics. Grade 9-12 Key: Number and Quantity Strand: RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities Algebra Strand: SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities Strand: IF = Interpreting, LE = Linear and Exponential Models, BF = Building, TF = Geometry Strand: CO = Congruence, SRT = Similarity, Right Triangles, and Trigonometry, C = Circles, GPE = Expressing Geometric Properties with Equations, GMD = Geometric Measurement and Dimension, MG = Modeling with Geometry Statistics and Probability Strand:ID = Interpreting Categorical and Quantitative Data, IC = Making Inferences and Justifying Conclusions, CP = Conditional Probability and the Rules of Probability, MD = Using Probability to Make Decisions

1 Make sense of problems and persevere in solving them. 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the reasoning of others. 4 Model with mathematics. Georgia Department of Education Accelerated GSE Pre-Calculus Expanded Curriculum Map 1 st Semester Standards for Mathematical Practice 5 Use appropriate tools strategically. 6 Attend to precision. 7 Look for and make use of structure. 8 Look for and express regularity in repeated reasoning. 1 st Semester Unit 1 Unit 2 Unit 3 Unit 4 Introduction to Trigonometry of General Triangles Identities Interpret functions that arise in applications in terms of the context MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Analyze functions using different representations MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology. MGSE9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. Extend the domain of trigonometric functions using the unit circle MGSE9-12.F.TF.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. MGSE9-12.F.TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. Model periodic phenomena with trigonometric functions MGSE9-12.F.TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. Prove and apply trigonometric identities MGSE9-12.F.TF.8 Prove the Pythagorean identity (sin A) 2 + (cos A) 2 = 1 and use it to find sin A, cos A, or tan A, given sin A, cos A, or tan A, and the quadrant of the angle. Build new functions from existing functions MGSE9-12.F.BF.4 Find inverse functions. MGSE9-12.F.BF.4d Produce an invertible function from a non-invertible function by restricting the domain. MGSE9-12.F.TF.3 Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number. MGSE9-12.F.TF.4 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. MGSE9-12.F.TF.6 Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed. MGSE9-12.F.TF.7 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. Apply trigonometry to general triangles MGSE9-12.G.SRT.9 Derive the formula A = (1/2)ab sin(c) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side. MGSE9-12.G.SRT.10 Prove the Laws of Sines and Cosines and use them to solve problems. MGSE9-12.G.SRT.11 Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces). Prove and apply trigonometric identities MGSE9-12.F.TF.9 Prove addition, subtraction, double and half-angle formulas for sine, cosine, and tangent and use them to solve problems.

1 Make sense of problems and persevere in solving them. 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the reasoning of others. 4 Model with mathematics. Georgia Department of Education Accelerated GSE Pre-Calculus Expanded Curriculum Map 2 nd Semester Standards for Mathematical Practice 5 Use appropriate tools strategically. 6 Attend to precision. 7 Look for and make use of structure. 8 Look for and express regularity in repeated reasoning. 2 nd Semester Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Matrices Conics Vectors Inferences & Conclusions from Data Probability Translate between the geometric description and the equation for a conic section MGSE9-12.G.GPE.2 Derive the equation of a parabola given a focus and directrix. MGSE9-12.G.GPE.3 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. Solve systems of equations MGSE9-12.A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = 3x and the circle x 2 + y 2 = 3. Perform operations on matrices and use matrices in applications MGSE9-12.N.VM.6 Use matrices to represent and manipulate data, e.g., transformations of vectors. MGSE9-12.N.VM.7Multiply matrices by scalars to produce new matrices. MGSE9-12.N.VM.8Add, subtract, and multiply matrices of appropriate dimensions. MGSE9-12.N.VM.9 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties. MGSE9-12.N.VM.10 Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse. MGSE9-12.N.VM.12 Work with 2 X 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area. Solve systems of equations MGSE9-12.A.REI.8 Represent a system of linear equations as a single matrix equation in a vector variable MGSE9-12.A.REI.9 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 3 or greater). Use properties of rational and irrational numbers MGSE9-12.N.CN.3 Find the conjugate of a complex number; use the conjugate to find the absolute value (modulus) and quotient of complex numbers. Represent complex numbers and their operations on the complex plane MGSE9-12.N.CN.4 Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number. MGSE9-12.N.CN.5 Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, (-1 + 3i) 3 = 8 because (-1 + 3i) has modulus 2 and argument 120. MGSE9-12.N.CN.6 Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints. Represent and model with vector quantities. MGSE9-12.N.VM.1Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, v, v, v). MGSE9-12.N.VM.2 Find the components of a vector by subtracting the coordinates of an initial point from Summarize, represent, and interpret data on a single count or measurement variable MGSE9-12.S.ID.2Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, mean absolute deviation, standard deviation) of two or more different data sets. MGSE9-12.S.ID.4Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. Understand and evaluate random processes underlying statistical experiments MGSE9-12.S.IC.1Understand statistics as a process for making inferences about population parameters based on a random sample from that population. MGSE9-12.S.IC.2Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0. 5. Would a result of 5 tails in a row cause you to question the model? Make inferences and justify conclusions from sample surveys, experiments, and observational studies MGSE9-12.S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. Use the rules of probability to compute probabilities of compound events in a uniform probability model MGSE9-12.S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = [P(A)]x[P(B A)] =[P(B)]x[P(A B)], and interpret the answer in terms of the model. MGSE9-12.S.CP.9 Use permutations and combinations to compute probabilities of compound events and solve problems. Calculate expected values and use them to solve problems MGSE9-12.S.MD.1Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions. MGSE9-12.S.MD.2Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. MGSE9-12.S.MD.3Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes. MGSE9-12.S.MD.4Develop a probability distribution for a random variable defined for a sample space in

Georgia Department of Education the coordinates of a terminal point. MGSE9-12.N.VM.3 Solve problems involving velocity and other quantities that can be represented by vectors. Perform operations on vectors MGSE9-12.N.VM.4 Add and subtract vectors. MGSE9-12.N.VM4a Add vectors endto-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. MGSE9-12.N.VM4b Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. MGSE9-12.N.VM4cUnderstand vector subtraction v w as v + ( w), where ( w) is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise. MGSE9-12.N.VM.5 Multiply a vector by a scalar. MGSE9-12.N.VM.5a Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(v x, v y) = (cv x, cv y). MGSE9-12.N.VM.5b Compute the magnitude of a scalar multiple cv using cv = c v. Compute the direction of cv knowing that when c v = 0, the direction of cv is either along v (for c > 0) or against v (for c < 0). MGSE9-12.N.VM.11 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors. MGSE9-12.S.IC.4Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. MGSE9-12.S.IC.5Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. MGSE9-12.S.IC.6Evaluate reports based on data. For example, determining quantitative or categorical data; collection methods; biases or flaws in data. which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households? Use probability to evaluate outcomes of decisions MGSE9-12.S.MD.5 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. MGSE9-12.S.MD.5a Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fastfood restaurant. MGSE9-12.S.MD.5b Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a lowdeductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident. MGSE9-12.S.MD.6Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). MGSE9-12.S.MD.7 Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).