CHAPTER 10 LAGRANGIAN MECHANICS

Similar documents
The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it

PHY 5246: Theoretical Dynamics, Fall Assignment # 5, Solutions. θ = l mr 2 = l

PHYS 601 HW3 Solution

Page 1. Motion in a Circle... Dynamics of Circular Motion. Motion in a Circle... Motion in a Circle... Discussion Problem 21: Motion in a Circle

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions

Torques, Atwood Machines, Angular Momentum. Click to add text

SOLUTIONS TO CONCEPTS CHAPTER 10

UNIT # 06 (PART I) SIMPLE HARMONIC MOTION EXERCISE I

Types of forces. Types of Forces

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Discussion Question 1A P212, Week 1 P211 Review: 2-D Motion with Uniform Force

8A Review Solutions. Roger Mong. February 24, 2007

Simple Harmonic Motion I Sem

SOLUTIONS TO CONCEPTS CHAPTER 6

Discussion Introduction P212, Week 1 The Scientist s Sixth Sense. Knowing what the answer will look like before you start.

CHAPTER 5 Newton s Laws of Motion

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

2A1A Vector Algebra and Calculus I

Homework: 5, 9, 19, 25, 31, 34, 39 (p )

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

Phys 6321 Final Exam - Solutions May 3, 2013

Math 0230 Calculus 2 Lectures

Chapter E - Problems

(3.2.3) r x x x y y y. 2. Average Velocity and Instantaneous Velocity 2 1, (3.2.2)

C D o F. 30 o F. Wall String. 53 o. F y A B C D E. m 2. m 1. m a. v Merry-go round. Phy 231 Sp 03 Homework #8 Page 1 of 4

Lecture 13 - Linking E, ϕ, and ρ

5.2 Volumes: Disks and Washers

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY

Summary: Method of Separation of Variables

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence

This final is a three hour open book, open notes exam. Do all four problems.

KINEMATICS OF RIGID BODIES

Polynomials and Division Theory

PREVIOUS EAMCET QUESTIONS

Solution to HW 4, Ma 1c Prac 2016

PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Physics Graduate Prelim exam

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

Conducting Ellipsoid and Circular Disk

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles

Physics Honors. Final Exam Review Free Response Problems

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Homework Assignment 6 Solution Set

The Wave Equation I. MA 436 Kurt Bryan

Electromagnetism Answers to Problem Set 10 Spring 2006

PROBLEM 5.15 PROBLEM mm SOLUTION SOLUTION. X ( mm 2 ) = mm 3 or X = 149 mm t. YS A = S ya

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

COMPUTER BASED TEST (CBT) Concept Based Questions & Solutions

PhysicsAndMathsTutor.com

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Physics Dynamics: Atwood Machine

Physics 110. Spring Exam #1. April 16, Name

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Introductory Physics Questions

Mathematics. Area under Curve.

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.

X Fx = F A. If applied force is small, book does not move (static), a x =0, then f=f s

Partial Differential Equations

Correct answer: 0 m/s 2. Explanation: 8 N

Chapter 2. Constraints, Lagrange s equations

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

MECH370: Modelling, Simulation and Analysis of Physical Systems

Phys 4321 Final Exam December 14, 2009

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3.

Mathematics of Motion II Projectiles

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

PRACTICE EXAM 2 SOLUTIONS

APPLICATIONS OF THE DEFINITE INTEGRAL

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

Contact Analysis on Large Negative Clearance Four-point Contact Ball Bearing

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Mathematics Extension 2

P 1 (x 1, y 1 ) is given by,.

ragsdale (zdr82) HW2 ditmire (58335) 1

r = cos θ + 1. dt ) dt. (1)

We divide the interval [a, b] into subintervals of equal length x = b a n

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

SOLUTIONS TO CONCEPTS CHAPTER

Chapter 1 COUPLED ONE-DIMENSIONAL OSCILLATORS

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

13.4 Work done by Constant Forces

Candidates must show on each answer book the type of calculator used.

Problem Set 4: Mostly Magnetic

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

Problems (Motion Relative to Rotating Axes)

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

US01CMTH02 UNIT Curvature

Section 14.3 Arc Length and Curvature

Classification of Spherical Quadrilaterals

FORM FIVE ADDITIONAL MATHEMATIC NOTE. ar 3 = (1) ar 5 = = (2) (2) (1) a = T 8 = 81

The distance between the initial and the terminal points is called the distance, magnitude, or norm.

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

Transcription:

CHAPTER LAGRANGIAN MECHANICS. Solution ( t (, t + αη ( t ( t (, t +αη ( t where (, t sinωt nd (, cos t ω ωt T V k ω t J α ω dt so: ( ( t t + + ( ω cosωt αη ω ( sinωt αη dt t t t α t J ( α ω ( cos ωt sin ωt dt αω ( ηcosωt ωηsinωt dt ( η ω η dt + + t t Eine the ter liner in α : t t t t ( ( ηcosωt ωηsinωt dt η t cosωt + ωηsinωtdt ωηsinωtdt t t t t η t η t ( st ter vnishes t both endpoints: ( ( t so J( α ω cos ωtdt+ α ( η ω η t t t ω ωt ωt + α η ω η 4 [ sin sin ] ( which is iniu t α t t dt dt t. V z T ( + y + z L T V ( + y + z z L L L, y, z y z d d, y dt, dt y d z dt z

, y L z d Fro equtions.4.5 qi dt q i, const y, y const z. Choosin enerlized coordinte s liner displceent down the inclined plne (See Fiure 8.6., for rollin without slippin ω 7 T + Iω + 5 For V t the initil position of the sphere, V sin 7 L T V + sin L 7 d, 5 dt L sin 7 sin 5 5 sin 7 Fro equtions 8.6. - 8.6. 7 5 5 c sin 7.4 ( For the distnce of the hnin block below the ede of the tble: T + nd V L T V + L d, dt L

(b T + + nd V l l L T V + + + l d ( +, ( + dt L + l ( + + l l+ l +.5 The four sses hve positions: : + : l + : l + 4 : l + l ( + + ( ( ( V l + + l + + l + l 4 T ( + + ( + + ( ( + + 4 L T V ( + + ( + + ( + + 4( ( ( 4 ( 4 cons. + + + + + t L ( + ( + ( ( + + d L ( + + ( dt L ( ( + + ( (

( ( ( ( + + + + 4 ( + 4 ( + ( + + + + ( ( + 4 4 4 L ( + ( L ( 4 4 ( + ( + ( 4 4 4 For, 4,, nd 4 : 5, 5 + 8 ( ( + +, Substitutin into the second eqution: 9 9 + + 8 5 5 88 8, 5 5 6 5 4 Accelertions: 5 : + 7 : + : + 5 4 :.6 See fiure.5., replcin the block with bll. The squre of the speed of the bll is clculted in the se wy s for the block in Eple.5.6. v + + cos The bll lso rottes with nulr velocity ω so 4

T v + Iω + M For rollin without slippin, ω. I 5 T ( + + cos + + M 5 V sin, for V t the initil position of the bll. 7 L T V + + cos sin 5 + M + 7 d 7 + cos, cos + 5 dt 5 L sin 7 cos sin 5 + 5 ( sin cos 7 L d + cos + M, ( M cos + + dt L + M + ( cos + + 5 sin cos 5 7 7 cos 5 sin cos 5cos 7 + M ( M (.7 Let be the slnt heiht of the prticle v + ω T v ( + ω V sin sinωt L T V ( + ω sinωt ωt L d, dt L ω sinω t ω sinωt ω sinωt 5

The solution to the hooeneous eqution ωt ωt ω, is Ae + Be Assuin prticulr solution to hve the for C ω ω Csinωt ω Csinωt sinωt ω ω Ae + Be + sin ωt ω At tie t, nd A+ B t t ωa ωb+ ω Csinωt, A ω B + ω ωt ωt ωt ωt ( e + e ( e e + ω ω sinωt Fro Appendi B, we use the identities for hyperbolic sine nd cosine to obtin coshωt sinhωt+ sinωt ω ω.8 In order tht prticle continues to ove in plne in rottin coordinte syste, it is necessry tht the is of rottion be perpendiculr to the plne of otion. For otion in the y plne, ω ˆk ω. v v + ω r ( i ˆ+ ˆjy + kˆ ω ( i ˆ + ˆjy v iˆ( ω y + ˆj( y + ω ( T v v ωy+ ω y + y + yω+ ω L T V L d ( ω y, ( ω y, dt V ( y ω+ ω V ( ωy ( y ω + ω F ωy ω ( L y +ω y d dt y (, ( y+ ω p, 6

V ( ω+ ω y y y ( ω ( ω ω V y+ + y y ( ω ω Fy y+ y For coprison, fro eqution 5.. ( A nd ω F + ω v + ω ( ω r F i ˆ + ˆjy + ωkˆ i ˆ + ˆjy + ωkˆ ωkˆ i ˆ + ˆjy F ωy ω y ( ( ( ( ( ω ω F y+ y.9 Choosin the is of rottion s the z is v v + ω r i ˆ+ ˆjy+ kz ˆ + ωkˆ i ˆ + ˆjy+ kz ˆ v iˆ ωy + ˆj y+ ω + kz ( ( ( ( ˆ T v v y+ y + y + y + + z L T V L d ( ω y ( ω y, dt V ( y ω+ ω V ( ωy ( y ω + ω F ωy ω ( ( ω ω ω ω L d y +ω y dt y V ( ω+ ω y y y V ( y+ ω ( ω+ ω y y y (, ( y+ ω ( ω ω F y+ y L d z, z z, dt z V z Fz z Fro eqution 5.. ( A nd ω V z z 7

F + ω v + ω ( ω r F ( i ˆ + ˆ jy + kz ˆ + ωk ˆ ( i ˆ + ˆ jy + kz ˆ + ωk ˆ ωk ˆ ( i ˆ + ˆ jy + kz ˆ F ωy ω y ( ( ω ω F y y Fz z. T ( r + r V k( r l rcos r k L T V ( r + r ( r l + rcos L d r, r r dt r L r k ( r l cos + r r r k r l + cos ( L r L r sin d ( r r sin dt 4 4 t & y T ( + y V y ( + cos ( + cos y sin L T V ( + cos + sin ( cos 8 4 [ + cos + ] ( cos 8 4 cos sin where we used the trionoetric identies cos + cos nd sin cos. (See Eple 4.6. ( + sin y ( cos 8

Let s sin so s cos s L s s ks where k The eqution of otion is thus k s+ s or s+ s - siple hronic oscilltor. Coordintes: cosωt+ bsin y sinωt bcos ω sinωt+ b cos y ω cosωt+ b sin L T V ( + y y ω b + b ω sin( ω t ( sin ω t b cos + d L b + bω ( ω cos( ωt dt L b ωcos( ωt bsin d The eqution of otion dt is ω cos( t sin b ω + b Note the eqution reduces to eqution of siple pendulu if ω.. Coordintes: lcosωt+ lcos( + ωt y l t+ l + t sinω sin ( ω ( sin ( ( cos( ωlsinωt + ω l + ωt y ωlcosωt+ + ω l + ωt L T + y l ω + + ω + ( (... ( + ( + + cos ωt ( cos cos ωt sin ωt sin l ω ω ωt ωt ωt... sin sin cos sin cos 9

( l ( l ( cos ω + + ω + ω + ω d dt l ω sin + l ω + ω sin ( ( + ω sin (b The bed eecutes siple hronic otion ( > opposite the point of ttchent. (c The effective lenth is "" l ω.4 v ˆj t+ l ( iˆcos + ˆjsin il ˆ cos + ˆ( j t + l sin T v v ( l cos + t + tl sin + l sin bout point dietriclly V t lcos t L T V ( l + t + tl sin lcos L l d + tl sin, l + l sin + tl cos dt L tl cos l sin l + l sin + tl cos tl cos l sin + + sin l For sll oscilltions, sin + + l π l T π ω +.5 ( T + I nd T + 5 V I 5

L T V + + T 5 The eqution of constrint is f(, The Lrne equtions with ultipliers re d f + λ t dt L d L f + λ dt L d L L f λ λ dt + λ nd fro the -eqution 5 λ Differentitin the eqution of constrint nd substitutin into the bove 5 nd 7 λ 7 (b The enerlized force tht is equivlent to the tension T is f Q λ λ 7.6 For v the velocity of differentil ss eleent, d, of the sprin t distnce below the support v v, d d T v + ( v d d + T + ( V k l d ( k l d ( V k l ( L T V k l + + + + d, + dt,

k( l + + k( l + + + For y l + k, + y+ ky The block oscilltes bout the point l+ + k with period π + T π ω k.7 Note: 4 objects ove their coordintes re lbeled i : The coordinte of the ovble, ssless pulley is lbeled p. Two equtions of constrint: f, l ( p p ( ( p ( ( p f,, + + l L T V + + d f j + λ j qi dt qi j qi Thus: ( + λ ( + λ ( + λ Now pply Lrne s equtions to the ovble pulley note p So: f f (4 λ + λ or λ λ p p Now - p cn be eliinted between f nd f ( f f + + l+ l (5 Thus + + With little lebr we cn solve ( (5 for the 5 unknowns,,, λ, nd λ

λ λ + + + + 4 4. As the check, let nd Thus, there is no ccelertion nd λ.8 (See Eple 5.. ( r reˆr r re ˆ ˆ r + r e Constrint: f ( ωt so ω nd T ( r + r L d r dt r nd d + λ f dt r ω r rr r + λ ωt ωt r Ae Be r pply constrint + ( ωt ωt r ωae ωbe r ( ωl so A+ B λ rr ω ω A ωb ωl l l A l A B l ωt ωt thus.. r ( e e r lsinhωt λ ω l sinhωtcoshω t r ωlcoshωt.88 now r l t t T so T sinh ω ω (b There re wys to clculte F (i See Eple 5.. F ω l ωt ωt ωl ωt ωt ( e e nd ( e + e F ω lcoshωt f (ii λ is the enerlized force, in this cse torque T, ctin on the bed f T rf λ

λ ω ω F r lsinhωt ω lcoshωt f l sinh tcoshωt.9 (See Eple 4.6. The eqution of constrint is ( f r, r T ( r + r V rcos r L ( r + r rcos d f + λ r dt r r L d L f λ f f + dt r Thus r cos r + λ r sin r rr Now r, r r so cos + λ sin sin nd d d so d sind or cos + λ cos hence, ( nd when λ prticle flls off heisphere t cos. Let rk the loction of the center of curvture of the ovble surfce reltive to fied oriin. This point defines the position of. r rks the position of the prticle of ss. r is the position of the prticle reltive to the ovble center of curvture of. Kinetic enery T + r r r + r + r + r + r ( ( but r r eˆ ˆ r + r e T + + r + r + ( re ˆ ˆ r + r e + + r + r + r sin r cos 4

Potentil enery L T V Eqution of constrint ( V y rsin f f r, r r f f d f Lrne s equtions + λ i dt i i d r sin rcos dt d r sin + r sin + r cos rcos + r sin dt usin constrint r constnt ; r r ( sin + cos ( + r rr rsin rsin r cos + r sin + r cos + rcos usin constrint r constnt ; r r sin cos + ( λ r r+ cos sin + r + sin + sin + Apply constrint λ cos + + sin + ( Now, plu solution for ( into eqution (: ( sin cos sin cos + + ( f sin f sin cos cos where f + d d d d d Now dt d dt d d So let d f sin f sin cos cos d Let y f sin d dy d ( sin y + d d d 5

( Hence: d( y d( sin nd d( y y y ( but t so y( sin sin ( f sin Now we cn solve for nd plu d d sin After soe lebr yields ( + f sin cos f sin d d f sin ( sin d ( sin, into ( to obtin λ ( The solution for λ ( is thus deterined fro eqution ( f sin cos + cos + sin collectin ters: ( f cos f sin cos sin + λ λ Plu, into the bove --- plus --- lot of lebr yields λ ( f sin f sin cos sin f + sin f sin where f + As check, let so it is ioveble then f nd f nd we hve λ ( sin which checks L T V ( R + R φ + z V L R d, R R, dt R. ( T v ( R + R φ + z R φ R V R 6

V R R φ R R R φ Q R L R d φ, R φ + RR V φ φ dt, φ φ φ V R φ + RR φ Q φ φ L d V z, z, z dt z z z V z Qz z For F, usin the coponents of fro eqution..: FR R Rφ Fφ R φ + R φ, F z z (, ( Fro Section., since R nd z re distnces, QR nd Qz re forces. However, since φ is n nle, Q φ is torque. Since F φ is coplnr with nd perpendiculr to R, Q φ (b RF nd ll equtions ree. φ v r + r + r φ sin L T V ( r + r + r φ sin V L d r, V r r, r + r φ sin dt r r r V r r r φ sin Qr r L r d, r + rr V dt, r φ sin cos V r + rr r φ sin cos Q L r d φ sin, r φ sin + rr φsin + r φ sin cos φ dt, φ V φ φ V r φsin + rr φsin + r φ sin cos Q φ φ is force F. Q nd Q φ re torques. Qr r Since φ is in the y plne, the oent r for φ is r sin ; i.e. Q rsin F. Q rf. Fro eqution..4 φ φ 7

( φ sin r ( + φ sin cos ( φsin + φsin + φ cos r r r F r r r F r r r F φ The equtions ree. V V V V V, so nd F. φ r For sphericl coordintes, usin eqution..: v r + r φ sin + r L T V ( r + r φ sin + r V ( r L d r, V r r, r φ sin + r dt r r r r r φ sin r F. For centrl field, ( r r L r d, r + rr L dt, r φ sin cos r + rr r φ sin cos L r φ sin, φ d r φ sin + rr φsin + r φ sin cos dt φ L φ r φsin + rr φsin + r φ sin cos. Since α constnt, there re two derees of freedo, r nd. vr r, vφ r φ sinα T v ( r + r φ sinα V rcosα L T V ( r + r φ sin α rcosα L d r, r r, L r φ sin α cosα dt r r r r φ sin α cosα L r L φ sin α, φ φ 8

Sy d ( r φsinα dt r φsinα constnt r cosα r d dr d r r r r dt dr dr dr d( r cosαdr r r r cosα + C r The constnt of intertion C is the totl enery of the prticle: kinetic enery due to the coponent of otion in the rdil direction, kinetic enery due to the coponent of otion in the nulr direction, nd the potentil enery. U( r + rcosα r For φ,, nd turnin points occur t r Then r cos α + C r ( cosα r Cr + The bove eqution is qudrtic in r ( r 4 nd hs two roots. l.4 Note tht the reltion obtined in Proble., ( cosα r Cr +, defines the turnin points. For the prticle to rein on sinle horizontl circle, there ust be two roots with r r. Thus ( r r divided into the bove epression leves ter tht is liner in r. ( r+ r c r rr + r r Cr + r r r + rr ( r C r r r ( r C r r ( r C r+ r ( r C ( + ( r r C r r r C For the reinder to vnish, both ters ust equl zero. 4r rc r C r 9

r Cr + r r And with r φ sinα φ r sin α Fro Prob.., r cosα r For sll oscilltions bout r, r r + ε. r ε ε ε + r r r r r ε ε cosα r r ε + ε cosα 4 r r 4 π r π ω φ π T sinα L d da + qa q + dt dt da A A A Usin the hint, + y + z dt y z.5 L v + qv A ( + y + z + q ( A + ya y + za z, A A y A z q + y + z A A A A A y A z + q + y + z q + y + z y z A A A A y z q y ( A z ( A z y q v A y z q y z (

( q v B Due to the cyclic nture of the Crtesin coordintes, i.e., iˆ ˆj kˆ y q ( v B y z q ( v B z r q v B Altoether, (.6 V z T ( + y + z T p p p, siilrly, y pz y nd z H T + V ( p + py + pz + z H p p H p, p constnt d p ( siilrly, py constnt, or y dt H py y p y H pz z pz H d pz, p z ( z z z dt These ree with the differentil equtions for projectile otion in Section 4...7 ( Siple pendulu V lcos T l T p l, p l p H T + V lcos l H p p l H l sin p

(b Atwood s chine V ( l T + + I [Includes the pulley] T I p + +, p I + + p H T + V ( I l + + H p p I + + H ( p, p ( (c Prticle slidin down sooth inclined plne V sin T T p p, p H T + V sin H p p H sin p, p sin.8 ( F r L T( q, q T( q, t note, potentil enery is tie dependent. i i i V k F so V Fdr e r r T v v ( r + r βt

pr r r r p r p r pr p k H pi qi L prr + p e r r Substitutin for r nd pr p k βt H + e r r (b H T + V which is tie-dependent (c E is not conserved p r.9 Locte center of coordinte syste t C.M. The potentil is independent of the center of ss coordintes. Therefore, they re inorble. (r, (r, p i q L i p r p pr p r r H βt L T V r + r + r + r k r+ r l where l is the lenth of the reled sprin nd k is the sprin constnt. p pr r r r r p r p r nd siilrly for ( ( ( H + + + k ( r+ r l Equtions of otion First,, re inorble coordintes, so p, p re ech conserved. H p r k( r+ r l r r H pr k( r+ r l r r p p r r p r pr constnt. The rdil oent re equl nd opposite.

. L k t t t δ Ldt t δldt δ k dt t t t ( δ kδ dt t d δ δ dt t t d t δ dt ( dt d ( t δ δ t dt t Intertin by prts: t t t t t t t t nd t ( δ dt δ δ d δ d d( ( dt dt dt t t δ d δ dt t t t t ( δ δ k dt + k. ( L c v V c Let γ v c L γ p This is the enerlized oentu for prt (b. Thus, Lrne s equtions for the -coponent re d d V p dt dt nd so on for the y nd z coponents. (b H v p L but So pi vi γ i i p c c H + + V γc H pc i i i γ c γc + γ + V 4

4 H ( p c + c + V γ c (c Now, if T γ c then we hve 4 4 p c pc + c c + 4 c γ v c c + 4 c c + γ v c ( 4 4 c v c + c v c v c c Thus H γ c + V T + V 4 4 4 γ c v (d T c + +... v c c T v + c ------------------------------------------------------------------------------------------------------------ 5