Review: Velocity: v( t) r '( t) speed = v( t) Initial speed v, initial height h, launching angle : 1 Projectile motion: r( ) j v r

Similar documents
Section 14.3 Arc Length and Curvature

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

Curves. Differential Geometry Lia Vas

10 Vector Integral Calculus

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Lesson 8.1 Graphing Parametric Equations

Thomas Whitham Sixth Form

Math 211/213 Calculus III-IV. Directions. Kenneth Massey. September 17, 2018

Lecture 3: Curves in Calculus. Table of contents

Mathematics of Motion II Projectiles

Math 231E, Lecture 33. Parametric Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

US01CMTH02 UNIT Curvature

3. Vectors. Vectors: quantities which indicate both magnitude and direction. Examples: displacemement, velocity, acceleration

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx

Sample Problems for the Final of Math 121, Fall, 2005

Math 0230 Calculus 2 Lectures

1. Review. t 2. t 1. v w = vw cos( ) where is the angle between v and w. The above leads to the Schwarz inequality: v w vw.

Mathematics. Area under Curve.

University of. d Class. 3 st Lecture. 2 nd

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1.

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

Line Integrals. Partitioning the Curve. Estimating the Mass

Math 20C Multivariable Calculus Lecture 5 1. Lines and planes. Equations of lines (Vector, parametric, and symmetric eqs.). Equations of lines

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

dt. However, we might also be curious about dy

Geometric and Mechanical Applications of Integrals

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

Week 10: Line Integrals

P 1 (x 1, y 1 ) is given by,.

[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

Line and Surface Integrals: An Intuitive Understanding

Math 8 Winter 2015 Applications of Integration

Section 17.2 Line Integrals

We divide the interval [a, b] into subintervals of equal length x = b a n

Surface Integrals of Vector Fields

Math 32B Discussion Session Session 7 Notes August 28, 2018

( ) where f ( x ) is a. AB/BC Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

Line Integrals. Chapter Definition

Ch AP Problems

Eigen Values and Eigen Vectors of a given matrix

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Some Methods in the Calculus of Variations

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Problem Set 4: Mostly Magnetic

Chapter 9. Arc Length and Surface Area

Physics 202, Lecture 14

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t

Section 6: Area, Volume, and Average Value

Math Calculus with Analytic Geometry II

NOT TO SCALE. We can make use of the small angle approximations: if θ á 1 (and is expressed in RADIANS), then

The Properties of Stars

Distance And Velocity

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย )

INTRODUCTION TO INTEGRATION

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Homework Assignment 6 Solution Set

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

Simple Harmonic Motion I Sem

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Physics 207 Lecture 7

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

4.4 Areas, Integrals and Antiderivatives

General Relativity 05/12/2008. Lecture 15 1

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6

The Form of Hanging Slinky

Physics 207 Lecture 5

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS

7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement?

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Conservation Law. Chapter Goal. 5.2 Theory

Big idea in Calculus: approximation

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

KINEMATICS OF RIGID BODIES

Mathematics Extension Two

So the `chnge of vribles formul' for sphericl coordintes reds: W f(x; y; z) dv = R f(ρ cos sin ffi; ρ sin sin ffi; ρ cos ffi) ρ 2 sin ffi dρ d dffi So

Conducting Ellipsoid and Circular Disk

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Interpreting Integrals and the Fundamental Theorem

Transcription:

13.3 Arc Length

Review: curve in spce: r t f t i g t j h t k Tngent vector: r '( t ) f ' t i g ' t j h' t k Tngent line t t t : s r( t ) sr '( t ) Velocity: v( t) r '( t) speed = v( t) Accelertion ( t) v '( t) r ''( t) 1 Projectile motion: r( ) j v r t gt t initil velocity v, initil position r g 3 ft grvittionl constnt sec Initil speed v, initil height h, lunching ngle : 1 r( t) v cos t, h v sin t gt

Recll the length of curve in the plne: curve s grph y f x : length from t to t curve in prmetric form : x f t nd y g t : length 1 [ f '(x)] dx [ '(t)] [ '(t)] f g t f t g t ht A curve in 3-spce : r,, Length or Arc Length [ '(t)] [ '(t)] [ '(t)] f g h Length r '( t)

Exmple 1: A line from to : r( t) t( ), t 1 length 1 r t 1 = distnce from to Exmple : Compute the length (circumference) of circle: prmetric description: ( x x ) ( y y ) r x x r cos( t), y y r sin( t) t length = r t r sin ( t) r cos ( t) r r

Prolem : A drunken ee trvels long the pth r( t) cos( t),sin( t), t for 1 secon. It then trvels t constnt speed in stright line for 1 more secon. How fr did the ee trvel? velocity: v( t) r'( t) sin( t),cos( t),1 Speed = v( t) 9 3 distnce trveled long the helix: 1 r '( t) 3 At time t 1, it trvels long the tngent line tngent line: u( s) r( t ) sv( t ) length = u '(s) 1 v ( t ) 3 ( 1) 3 1 Totl distnce trveled: 6 ft

Arc length function descries distnce from eginning point t : s( t) t r u du Notice: '( t) r rt gives position on the curve s function of time its more nturl to look t the odometer or the mile mrkers to tell where you re fter you hve trveled certin distnce s we would like to hve t s function of s so tht we could reprmetrize in terms of s. Using the rc length function or just t t s giving us r t s r s s s t we cn find t s function of s

Exmple: t t Prmetrize the following curve y rc length: r 3sin(t ) i 3cos( ) k t t t t t r ' 6 cos( ) i 6 sin( ) k t t t t t r ' 36 cos ( ) 36 sin( ) 36t 6 t t s s( t) 6udu ut s Solve for t : t= 3 3 u 3t u s s 3 3 Plug into r( t) : r( t( s)) r( s/ 3) 3sin( ) i3cos( ) s s Arc length prmetriztion: r( s) 3sin( ) i 3cos( ) k 3 3 Notice: r '( s) 1 length from s to s : r s 1 t is n rc length prmeter if r '( t) 1! k

13.4 Curvture

The curvture of curve r( t) mesures the mount the tngent vector en. Q curvture t P> curvture t Q P Tngent vector r '( t) Unit tngent vector '( t) T r r '( t) ( r '( s)! ) Curvture - the mgnitude of the rte of chnge of the unit tngent vector T with respect to the rc length prmeter s. dt T s s dt d dr r if s is the rc length prmeter T r s

Exmples: ) The curvture of stright line: r () t r + t v () r' t v wht is the rc length prmetriztion of the line: v r (s) r + s r' v dt r s ( if not rc lenght: ( ), then ''( ) ) The curvture of circle of rdius r: r ( t) r cos( t), r sin( t) r '( t) r sin( t), r cos( t) ' t r t r + t v r t t v ) r r hence s u du rt or t r / s s s s s rc length prmetriztion: r (s) rcos( ), rsin( ) T r'(s) sin( ),cos( ) r r r r dt 1 s 1 s T' cos( ), sin( ) dt 1 1 r r r r r r smll rdius mens lrge curvture! t r v since then (s) 1 v

It is usully too difficult to prmetrize curve y rc length. Express curvture in terms of generl prmeter t : Recll s( t) dt d T dt Exmple: t r u du hence: '( t) r T r t t Compute the curvture of n ellipse: r ( t) cos( t),sin( t) r '( t) sin( t),cos( t) r T r t t x y 1 '( t) sin ( t) cos ( t) T( t) T'( t) sin( t),cos( t) t t sin ( ) cos ( ) sin ( ) cos ( ) t t cos( t), sin( t) T'( t) ( sin ( t) cos ( t)) 3/ T r t t ( lengthy computtion ) ( sin ( t) cos ( t)) 3/

Sometimes it is esier to use nother formul: Why is this true? r '( t) Recll: T nd r'( t) r '( t) T r t t r tr t rt 3 Hence: r '( t) r '( t) T T nd r''( t) rtr t T T T d s ' d T T' T d s T T' ' T T ut TT 1 implies T' T TT' TT' i.e., T is perpendiculr to T' This implies TT' T T' sin( ) T' r' Put together, we get: rtr t T T' r' = r' 3

Exmple: Ellipse revisited: r( t) cos( t),sin( t) or r( t) cos( t),sin( t), r '( t) sin( t),cos( t), r ''( t) cos( t), sin( t), i j k t t sin( t) cos( t) r r cos( t) sin( t) ( sin ( t) cos ( t)) k = k κ = r t r t r t 3 = sin (t) + cos (t) 3

Exmple: Curvture of the (ellipticl) helix: r ( t) cos( t),sin(t), c t r '( t) sin( t),cos( t),c r ''( t) cos( t), sin(t), i j k sin( ) cos( ) r t r t t t c r cos( t) sin( t) tr t c sin ( t) c cos ( t) r'( t) sin ( t) cos ( t) c κ = r t r t ( csin( t)) i ( c cos( t) ) j ( sin ( t) cos ( t)) k csin( t) i c cos( t) j k c sin ( t) c cos ( t) r t 3 sin ( t) cos ( t) c 3/ Circulr helix:, c 3/ c c c 3/ c constnt!

Apppliction: Curvture of plne curve: r tr t rt 3 r ( t) x( t), y(t), r' ( t) x '( t), y'(t), i j k rtr t x ' y ' ( x ' y '' x '' y ') k x'' y'' x ' y '' x '' y ' ( x') ( y') 3/

Summry: Length of curve r '( t) Arc length function s( t) t r u du '( t) r Arc length prmetriztion r( s) with r'( s) 1 r '( t) Unit tngent vector T r '( t) dt Curvture: r s r'(s) T r t t r tr t rt 3