Supporting Information

Similar documents
Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Electronic Supplementary Information (ESI) for Chem. Commun.

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

A Computational Model for the Dimerization of Allene: Supporting Information

Supplementary Information

Supporting Information

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information

SUPPLEMENTARY INFORMATION

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Driving forces for the self-assembly of graphene oxide on organic monolayers

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Elucidating the structure of light absorbing styrene. carbocation species formed within zeolites SUPPORTING INFORMATION

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, <S 2 > values for different radical systems. HS BS1 BS2 BS3 < S 2 >

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Supplementary Information:

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge

Supporting Information Computational Part

Supporting Information

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

ELECTRONIC SUPPLEMENTARY INFORMATION

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b

Supporting Information

How Large is the Elephant in the Density Functional Theory Room?

Ring expansion reactions of electron-rich boron-containing heterocycles. Supporting Information Contents

Supporting Information

Supporting Information (SI)

Supporting Information for

Ethynylene-linked Figure-eight. Octaphyrin( ): Synthesis and. Characterization of Its Two Oxidation States

Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Supporting Information for. Acceptor-Type Hydroxide Graphite Intercalation Compounds. Electrochemically Formed in High Ionic Strength Solutions

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Scalable synthesis of quaterrylene: solution-phase

Supporting Information

Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain

Nucleophilicity Evaluation for Primary and Secondary Amines

Electronic Supplementary Information for:

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Electrochemical Reduction of Aqueous Imidazolium on Pt (111) by Proton Coupled Electron Transfer

SUPPORTING INFORMATION

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

Ni II Tetrahydronorcorroles: Antiaromatic Porphyrinoids with Saturated Pyrrole Units

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons

SUPPORTING INFORMATION

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR

Motooka, Nishi, Fukuoka , Japan.

Unveiling the role of hot charge-transfer states. in molecular aggregates via nonadiabatic. dynamics

Ionic liquid electrolytes for reversible magnesium electrochemistry

Supporting information

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Supporting Information

Supporting Information

Infrared Spectra and Electronic Structure Calculations for the

Supporting Information

Asymmetric Redox-Annulation of Cyclic Amines. Supporting Information

Supplementary information

Detailed Syntheses. K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Synthesis, electrochemical and theoretical studies of. V-Shaped donor-acceptor hexaazatriphenylene. (HAT) derivatives for second harmonic generation

Speciation of Adsorbed Phosphate at Gold Electrodes: A Combined. Surface-Enhanced Infrared Absorption Spectroscopy and DFT Study

Electronic Supporting Information

Crystal structure landscape in conformationally flexible organo-fluorine compounds

Organic photodiodes constructed from a single radial heterojunction. microwire

A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

Supporting Information

excited state proton transfer in aqueous solution revealed

Two Spin-state Reactivity in the Activation and Cleavage of CO 2 by [ReO 2 ]

Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand. Supporting Information

Electronic Supplementary Information (ESI)

Supporting information. For. In-situ Identification of Intermediates of Benzyl. Coupled with DFT Calculation

Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles

SUPPLEMENTARY MATERIAL. Nitrogen Containing Ionic Liquids: Biodegradation Studies and

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Sodium Intercalation Chemistry in Graphite

Supporting Information

Supporting Information

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Supporting Information

Electronic Supplementary information

Electronic Supplementary Information

Nickel-Thiolate Complex Catalyst Assembled in One Step in. Water for Solar H 2 Production

SUPPORTING INFORMATION. Mechanistic Analysis of Water Oxidation Catalyzed by Mononuclear Copper in Aqueous Bicarbonate Solutions

Transcription:

Supporting Information Four Di-butylamino Substituents Are Better than Eight in Modulating the Electronic Structure and Third-order NLO Properties of Phthalocyanines Yuxiang Chen, Wei Cao, Chiming Wang, Dongdong Qi,,* Kang Wang, and Jianzhuang Jiang,*

Content The validity of the functional τhcthhyb. Systematic comparison between the cyclic voltammograms for M{Pc[N(C 4 H 9 ) 2 ] 4 } and M{Pc[N(C 4 H 9 ) 2 ] 8 }. References for Supporting Information Figure SS1. The experimental and calculated vertical excitation energies for H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } (the experimental spectrum was recorded in CHCl 3 solution). Figure SS2. The comparison of cyclic voltammograms for M{Pc[N(C 4 H 9 ) 2 ] 4 } and M{Pc[N(C 4 H 9 ) 2 ] 8 }. Table SS1. Comparison between the calculated and experimental excitation energy of H 2 {Pc[N(C 4 H 9 ) 2 ] 4 }. Table SS2. The LCI (linear convolution integral) analysis to the CV diagrams. Figure S1. Experimental and simulated isotopic patterns for 1-5.

Figure S2. 1 H NMR spectrum of 1 recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. Figure S3. 1 H NMR spectrum of 2 recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. Figure S4. 1 H NMR spectrum of 3 recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. Figure S5. 1 H NMR spectrum of 5 recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. Figure S6. Electronic absorption spectra of M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Mg, Ni, Cu, Zn) (1-5) in CHCl 3. Figure S7. IR spectra of M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Mg, Ni, Cu, Zn) (1-5). Figure S8. Cyclic voltammograms of 1-5 (from top to bottom) in CH 2 Cl 2 containing 0.1 mol dm 3 [Bu 4 N][ClO 4 ] at a scan rate of 30 mv s 1. Table S1. Analytical and mass spectrometric data for 1-5.

Table S2. 1 H NMR data (δ) for 1, 2, 3, and 5 recorded with the concentration of ca. 1.0 10-3 M in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. Table S3. Crystal data and structure refinements for 4-(dibutylamino)phthalonitrile and 4,5-bis(dibutylamino)phthalonitrile. Table S4. The two dihedral angles Φ 1 and Φ 2 for 4-(dibutylamino)phthalonitrile and 4,5-bis(dibutylamino)phthalonitrile. Table S5. The two dihedral angles Φ 1 and Φ 2 for M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn) and M{Pc[N(C 4 H 9 ) 2 ] 8 } (M = 2H, Zn). Table S6. Electron density difference plots of electron transitions for MPc (M = 2H, Zn). Table S7. Electron density difference plots of electron transitions for M{Pc[N(C 4 H 9 ) 2 ] 8 } (M = 2H, Zn). Table S8. Electron density difference plots of electron transitions for M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn). Table S9. The molecular orbital maps with their energy levels for MPc, M{Pc[N(C 4 H 9 ) 2 ] 8 }, and M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn).

The validity of the functional τhcthhyb In all cases, density functional theory (DFT) calculations with B3LYP 1 and time dependent density functional theory (TDDFT) calculations with τhcthhyb 2 were used to optimize geometry and simulate the electronic absorption. In order to provide more reasonable TDDFT calculating results, twelve different functionals including B3PW91, 1a,3 BB1K, 4 LC-HCTH147, 5 LC-τHCTH, 5d,6 M11, 7 M06-2X, 8 τhcthhyb, τhcth, 6 ωb97x, 9 B3LYP, PBE, 10 and MPW1KCIS, 11 have been employed to study the transition energies and the transition natures of MPc (M = 2H, Zn), M{Pc[N(C 4 H 9 ) 2 ] 8 } (M = 2H, Zn), and M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn). The LanL2DZ basis set for Zn atom and 6-31G(d) basis set for all the other atoms were employed. 12 All calculations were carried out using Gaussian 09 D.01 program. 13 Comparison of the results obtained by the twelve different levels of theory with the experiment is shown in Figure SS1 and tabulated in Table SS1 (Supporting Information). The experimental electronic absorption peaks of H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } recorded in CHCl 3 are located in 1.62, 2.40, and 2.68 ev, respectively. As can be found in Figure SS1 and Table SS1 (Supporting Information), the experimentally revealed broad Q band of H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } at 1.62 ev is overestimated by all the methods except the τhcth one. The τhcth method is underestimated by nearly 0.11 ev. In detail, the difference between the calculated and experimental data is 0.20 ev for B3PW91, 0.32 ev for BB1K, 0.15 ev for LC-HCTH147, and 0.07 ev for LC-τHCTH, 0.24 ev for M11, 0.35 ev for M06-2X, 0.15 ev for τhcthhyb, 0.11 ev for τhcth, 0.19 ev for ωb97x, 0.20 ev for B3LYP, 0.31 ev for PBE, and 0.18 ev for

MPW1KCIS, respectively, revealing that LC-HCTH147, LC-τHCTH, and τhcthhyb tend to provide better excitation energies in the low-energy Q-band region. Experimentally, the two new peaks were observed for H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } at 2.40 and 2.68 ev due to the introduction of peripheral dibutylamino substituents. Similarly, calculation with B3PW91, τhcthhyb, τhcth, and B3LYP functionals indicates obvious absorption at 2.36/2.79, 2.23/2.68, 1.88/2.36, and 2.37/2.79 ev, respectively, while other functionals do not predict these typical peaks, Figure SS1 and Table SS1 (Supporting Information). As detailed above, the hgga functional τhcthhyb provides an overall improvement in predicting the electronic absorption spectrum of H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } in 400-800 nm region, which could well explain the red-shift of the Q band and the broad absorption band in 400-600 nm. As a result, TDDFT calculations with τhcthhyb are applied to simulate the molecular orbitals and electronic absorption spectra of the whole series of metal-free and zinc compounds of phthalocyanines possessing dibutylamino at the phthalocyanine periphery in our text.

Systematic comparison between the cyclic voltammograms for M{Pc[N(C 4 H 9 ) 2 ] 4 } and M{Pc[N(C 4 H 9 ) 2 ] 8 } In order to deeply comprehend the nature of first oxidation potential in the cyclic voltammograms for M{Pc[N(C 4 H 9 ) 2 ] 4 } and M{Pc[N(C 4 H 9 ) 2 ] 8 } (M = 2H, Mg, Cu, Zn), the first oxidation potential peak is split out by the cubic curve tangent to the main CV curve at the starting point (A or D) and the end point (C or F), Figure SS2 (Supporting Information). 14 As can be found, the first oxidation potential range is -0.20~+0.63 V for H 2 {Pc[N(C 4 H 9 ) 2 ] 4 }, -0.47~+0.48 V for Mg{Pc[N(C 4 H 9 ) 2 ] 4 }, -0.39~+0.68 V for Cu{Pc[N(C 4 H 9 ) 2 ] 4 }, and -0.54~+0.38 V for Zn{Pc[N(C 4 H 9 ) 2 ] 4 }, respectively. In comparison, the first oxidation potential range of their counterparts is +0.20~+0.73 V for H 2 {Pc[N(C 4 H 9 ) 2 ] 8 }, -0.30~+0.34 V for Mg{Pc[N(C 4 H 9 ) 2 ] 8 }, -0.08~+0.61 V for Cu{Pc[N(C 4 H 9 ) 2 ] 8 }, and -0.30~+0.45 V for Zn{Pc[N(C 4 H 9 ) 2 ] 8 }, respectively. The overall comparison between the first oxidation potential of these counterparts clearly indicates the lower first oxidation potential of M{Pc[N(C 4 H 9 ) 2 ] 4 } and the higher first oxidation potential of M{Pc[N(C 4 H 9 ) 2 ] 8 }, leading to the significant reducibility of M{Pc[N(C 4 H 9 ) 2 ] 4 } in its chloroform solution.

References for Supporting Information [1] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785-789. (c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206. [2] Boese, A. D.; Handy, N. C. J. Chem. Phys. 2002, 116, 9559-9569. [3] (a) Ziesche, P., Eschrig, H. Eds. Electronic Structure of Solids '91 : Proceedings of the 75th WE-Heraeus-Seminar; Akademie Verlag: Berlin, 1991. (b) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B. 1992, 46, 6671-6687. (c) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B. 1993, 48, 4978. (d) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533-16539. (e) Dobson, J. F., Vignale, G., Das, M. P. Eds. Electronic Density Functional Theory: Recent Progress and New Directions. Plenum Press: New York, 1998. [4] (a) Becke, A. D. Phys. Rev. A. 1988, 38, 3098-3100. (b) Becke, A. D. J. Chem. Phys. 1996, 104, 1040-1046. [5] (a) Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264-6271. (b) Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. J. Chem. Phys. 2000, 112, 1670-1678. (c) Boese, A. D.; Handy, N. C. J. Chem. Phys. 2001, 114, 5497-5503. (d) Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540-3544. [6] Boese, A. D.; Handy, N. C. J. Chem. Phys. 2002, 116, 9559-9569. [7] Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 2, 2810-2817.

[8] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241. [9] Chai, J.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106. [10] Ernzerhof, M.; Perdew, J. P. J. Chem. Phys. 1998, 109, 3313-3320. [11] (a) Rey, J.; Savin, A. Int. J. Quantum Chem. 1998, 69, 581-590. (b) Gonis, A., Kioussis, N., Ciftan, M. Eds. Electron Correlations and Materials Properties, Kluwer Academic: New York, 1999 (c) VanDoren, V., VanAlsenoy, C., Geerlings, P. Eds. Density Functional Theory and its Application to Materials, A.I.P. Conference Proceedings: New York, 2001; Vol. 577 (d) Toulouse, J.; Savin, A.; Adamo, C. J. Chem. Phys. 2002, 117, 10465-10473. (e) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664-675. [12] (a) P. J. Hay.; W. R. Wadt. J. Chem. Phys. 1985, 82, 299-310. (b) P. J. Hay.; W. R. Wadt. J. Chem. Phys. 1985, 82, 270-283. (c) W. R. Wadt.; P. J. Hay. J. Chem. Phys. 1985, 82, 284-298. [13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö.,

Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, revision D.01, Gaussian, Inc.: Pittsburgh, PA, 2009. [14] Zhang, R. Scientific Computing with Python, Chapter 3, pp 79-114, Tsinghua University Press, 2012.

Figure SS1. The experimental and calculated vertical excitation energies for H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } (the experimental spectrum was recorded in CHCl 3 solution).

Figure SS2. The comparison of cyclic voltammograms for M{Pc[N(C 4 H 9 ) 2 ] 4 } and M{Pc[N(C 4 H 9 ) 2 ] 8 }. (M = 2H, Mg, Cu, Zn).

Table SS1. Comparison between the calculated and experimental excitation energy of H 2 {Pc[N(C 4 H 9 ) 2 ] 4 }. Calculated excitation energy (ev), oscillator strength (f), and configurations in vacuum system are displayed. Excitation energy between 1.5 and 3.0 ev, f > 0.1000, and configurations which contribute more than 10% are shown. (Assignment: S = excited state, S1 = the first excited state, S2 = the second excited state, S3 = the third excited state, etc.) Experiment Peak: 1.62 ev Peak: 2.40 ev Peak: 2.68 ev B3PW91 BB1K LC-HCTH147 LC-τHCTH M11 M06-2X τhcthhyb τhcth ωb97x E = 1.82 ev f = 0.5109 S1 E = 1.95 ev f = 0.6316 S1 E = 1.78 ev f = 0.6885 S1 E = 1.69 ev f = 0.5343 S1 E = 1.87 ev f = 0.5291 S1 E = 1.97 ev f = 0.6004 S1 E = 1.76 ev f = 0.4404 S1 E = 1.51 ev f = 0.1375 S1 E = 1.81 ev f = 0.5287 S1 E = 1.86 ev f = 0.4606 S2 E = 2.36 ev f = 0.1776 S3 E = 2.79 ev f = 0.3726 S4 E = 1.99 ev f = 0.6198 -- -- S2 -- -- -- E = 1.76 ev f = 0.6827 -- -- S2 E = 1.94 ev f = 0.7104 -- -- S2 E = 2.02 ev f = 0.6701 -- -- S2 E = 1.80 ev E = 2.23 ev E = 2.68 ev f = 0.4270 f = 0.2330 f = 0.3510 S2 S3 S4 E = 1.57 ev E = 1.89 ev E = 2.36 ev f = 0.3775 f = 0.3544 f = 0.3180 S2 S3 S4 E = 1.88 ev f = 0.6844 -- -- S2

E = 1.82 ev E = 1.87 ev E = 2.37 ev E = 2.79 ev B3LYP f = 0.5107 f = 0.4585 f = 0.1605 f = 0.3756 S1 E = 1.93 ev S2 E = 1.98 ev S3 S4 PBE f = 0.6149 f = 0.5834 -- -- S1 E = 1.80 ev S2 E = 1.84 ev MPW1KCIS f = 0.7244 f = 0.7148 -- -- S1 S2

Table SS2. The LCI (linear convolution integral) analysis to the CV diagrams. Here, PnU/PnL (n = 1, 2, 3, 4) is the abbreviate of the nth Peak in the Upper/Lower curve. The Oxd 1 data can be calculated according to Pn = (PnU + PnL) / 2, n = 1, 2, 3, 4. LCI analysis to the CV Diagrams Oxd 1 of Independent Peaks P 1 = 0.07 V P 2 = 0.12 V P 3 = 0.22 V P 4 = 0.35 V P 1 = -0.08 V P 2 = 0.09 V P 3 = 0.16 V P 4 = 0.27 V P 1 = -0.08 V P 2 = 0.10 V P 3 = 0.23 V P 4 = 0.38 V P 1 = -0.08 V P 2 = 0.06 V P 3 = 0.23 V P 4 = 0.39 V

P 1 = -0.22 V P 2 = -0.12 V P 3 = 0.05 V P 4 = 0.15 V

Figure S1. (a) Experimental and (b) simulated isotopic patterns for 1; (c) Experimental and (d) simulated isotopic patterns for 2; (e) Experimental and (f) simulated isotopic patterns for 3; (g) Experimental and (h) simulated isotopic patterns for 4; (i) Experimental and (j) simulated isotopic patterns for 5.

Figure S2. 1 H NMR spectrum of H 2 {Pc[N(C 4 H 9 ) 2 ] 4 } (1) recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. The signals due to residual CH 2 Cl 2 and N 2 H 4 H 2 O are denoted as * and #, respectively.

Figure S3. 1 H NMR spectrum of Mg{Pc[N(C 4 H 9 ) 2 ] 4 } (2) recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. The signals due to residual CH 2 Cl 2 and N 2 H 4 H 2 O are denoted as * and #, respectively.

Figure S4. 1 H NMR spectrum of Ni{Pc[N(C 4 H 9 ) 2 ] 4 } (3) recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. The signals due to residual CH 2 Cl 2 and N 2 H 4 H 2 O are denoted as * and #, respectively.

Figure S5. 1 H NMR spectrum of Zn{Pc[N(C 4 H 9 ) 2 ] 4 } (5) recorded in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. The signals due to residual CH 2 Cl 2 and N 2 H 4 H 2 O are denoted as * and #, respectively.

Figure S6. Electronic absorption spectra of M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Mg, Cu, Ni, Zn) (1-5) in CHCl 3.

Figure S7. IR spectra of M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Mg, Cu, Ni, Zn) (1-5).

Figure S8. Cyclic voltammograms of 1-5 in CH 2 Cl 2 containing 0.1 M [Bu 4 N][ClO 4 ] at a scan rate of 30 mv s 1.

Table S1. Analytical and mass spectrometric data for 1-5. a compound (M) + (m/z) Analysis C H N 1 1022.9 (1022.7) b 74.11 (74.16) c 8.24 (8.42) c 16.21 (16.18) c 2 1044.1 (1044.7) b 69.99 (70.07) d 7.86 (7.79) d 15.09 (15.03) d 3 1078.5 (1078.6) b 67.83 (67.99) e 7.58 (7.53) e 14.64 (14.69) e 4 1083.4 (1083.6) b 69.13 (69.16) f 7.58 (7.78) f 14.89 (14.95) f 5 1084.5 (1084.6) b 68.44 (68.60) g 7.58 (7.59) g 14.83 (14.88) g [a] Calculated values given in parentheses. [b] By MALDI-TOF mass spectrometry. [c] Contain 0.125 equiv. solvated CH 2 Cl 2 and 0.25 equiv. solvated H 2 O. [d] Contain 0.75 equiv. solvated CH 2 Cl 2 and 0.125 equiv. solvated THF. [e] Contain 0.75 equiv. solvated CH 2 Cl 2. [f] Contain 0.125 equiv. solvated H 2 O, 0.25 equiv. solvated CH 2 Cl 2 and 0.5 equiv. solvated CH 3 OH. [g] Contain 0.75 equiv. solvated CH 2 Cl 2.

Table S2. 1 H NMR data (δ) for 1, 2, 3, and 5 recorded with the concentration of ca. 1.0 10-3 M in CD 2 Cl 2 /80% N 2 H 4 H 2 O (v/v = 100/1) at 25 C. NH Ar-H n-bu CH 2 CH 2 CH 2 CH 3 1 0.32-0.16 (m, 2 H) 8.97-8.85 (m, 4 H) 8.42-8.35 (m, 4 H) 7.39-7.30 (m, 4 H) 3.75-3.72 (m, 16 H) 1.95-1.92 (m, 16 H) 1.64-1.62 (m, 16 H) 1.20-1.14 (m, 24 H) 2 9.12-8.93 (m, 4 H) 8.59-8.52 (m, 4 H) 7.42-7.36 (m, 4 H) 3.78-3.74 (m, 16 H) 1.98-1.91 (m, 16 H) 1.68-1.59 (m, 16 H) 1.17-1.13 (m, 24 H) 3 8.64-8.33 (m, 4 H) 8.11-7.86 (m, 4 H) 7.20-6.99 (m, 4 H) 3.65-3.57 (m, 16 H) 1.91-1.89 (m, 16 H) 1.64-1.61 (m, 16 H) 1.18-1.16 (m, 24 H) 5 9.13-9.09 (t, 4 H) 8.60-8.59 (d, 4 H) 7.44-7.43 (d, 4 H) 3.78-3.75 (t, 16 H) 1.98-1.90 (m, 16 H) 1.66-1.61 (m, 16 H) 1.17-1.14 (t, 24 H)

Table S3. Crystal data and structure refinements for 4-(dibutylamino)phthalonitrile (a) and 4,5-bis(dibutylamino)phthalonitrile (b). Compound a b formula C 16 H 21 N 3 C 24 H 38 N 4 fw 255.36 382.58 crystal system monoclinic monoclinic space group P2 1 /c P2 1 /c a 12.431(3) 14.2971(14) b 8.2243(12) 9.9436(10) c 16.179(3) 17.5443(18) α 90.00 90.00 β 103.514(18) 108.113(11) γ 90.00 90.00 V 1608.3(5) 2370.6(4) Z 4 4 θ range (deg) 3.10-24.50 3.01-25.00 F calcd (g/cm 3 ) 1.055 1.072 µ(mm -1 ) 0.064 0.064 F(000) 552 840 R 1 (I>2θ) 0.0830 0.0513 R w2 (I>2θ) 0.2276 0.1252 R w2 for all 0. 2915 0.1494 GOF on F 2 0.983 0.967 CCDC number 1442281 1442282

Table S4. The two dihedral angles Φ 1 and Φ 2 for 4-(dibutylamino)phthalonitrile and 4,5- bis(dibutylamino)phthalonitrile. Precursors The dihedral angles Φ 1 3.98 Φ 2 7.83 Φ 1 18.95 Φ 2 55.88 Φ 1 18.42 Φ 2 55.08

Table S5. The two dihedral angles Φ 1 and Φ 2 for M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn) and M{Pc[N(C 4 H 9 ) 2 ] 8 } (M = 2H, Zn). Fragment A Fragment B Fragment C Fragment D M=2H, R 2 =R 3 =R 5 =R 7 =H Φ 1 2.84 5.49 3.51 4.08 R 1 =R 4 =R 6 =R 8 = N(C 4 H 9 ) 2 Φ 2 10.85 25.27 11.58 11.45 M=2H, R 2 =R 3 =R 5 =R 8 =H Φ 1 2.43 4.99 4.11 7.42 R 1 =R 4 =R 6 =R 7 = N(C 4 H 9 ) 2 Φ 2 10.93 13.26 10.83 24.78 M=2H, R 2 =R 3 =R 6 =R 7 =H Φ 1 5.38 7.46 5.38 7.46 R 1 =R 4 =R 5 =R 8 = N(C 4 H 9 ) 2 Φ 2 23.96 24.98 23.95 24.98 M=2H, R 2 =R 4 =R 6 =R 8 =H Φ 1 7.11 9.34 7.11 9.34 R 1 =R 3 =R 5 =R 7 = N(C 4 H 9 ) 2 Φ 2 25.37 25.25 25.37 25.25 M=Zn, R 2 =R 3 =R 5 =R 7 =H Φ 1 2.12 4.30 4.00 4.04 R 1 =R 4 =R 6 =R 8 = N(C 4 H 9 ) 2 Φ 2 19.44 11.21 10.68 10.78 M=Zn, R 2 =R 3 =R 5 =R 8 =H Φ 1 1.73 1.73 5.50 5.50 R 1 =R 4 =R 6 =R 7 = N(C 4 H 9 ) 2 Φ 2 2.83 2.83 5.68 5.68 M=Zn, R 2 =R 3 =R 6 =R 7 =H Φ 1 1.60 1.60 1.60 1.60 R 1 =R 4 =R 5 =R 8 = N(n-C 4 H 9 ) 2 Φ 2 3.87 3.87 3.87 3.87 M=Zn, R 2 =R 4 =R 6 =R 8 =H Φ 1 3.74 3.74 3.74 3.74 R 1 =R 3 =R 5 =R 7 = N(C 4 H 9 ) 2 Φ 2 24.07 24.07 24.07 24.07 M=2H R 1 =R 2 =R 3 =R 4 =R 5 =R 6 =R 7 =R 8 = N(C 4 H 9 ) 2 M=Zn R 1 =R 2 =R 3 =R 4 =R 5 =R 6 =R 7 =R 8 = N(C 4 H 9 ) 2 Φ 1 Φ 2 Φ 1 Φ 2 23.91 25.13 23.91 25.13 23.56 24.60 23.56 24.60 56.93 58.14 56.93 58.14 56.79 57.64 56.79 57.64 24.87 24.86 24.87 24.86 24.82 24.85 24.82 24.84 57.68 57.80 57.67 57.79 57.79 57.73 57.78 57.71

Table S6. Electron density difference plots of electron transitions (isovalue: 2.0 10-4 e au -3 ) for H 2 Pc and ZnPc. Electron densities move from the cyan area to the purple area. Excited states with less than 30000 cm -1 and configurations which contribute more than 5% are shown (assignment: H = HOMO, L = LUMO, L+1 = LUMO+1, H-1 = HOMO-1, etc.). 598 nm 594 nm H L (94%) H-2 L+1 (5%) 590 nm H L+1 (88%) H-1 L (7%) H-3 L (5%) H L (92%) H-3 L+1 (8%)

Table S7. Electron density difference plots of electron transitions (isovalue: 2.0 10-4 e au -3 ) for M{Pc[N(C 4 H 9 ) 2 ] 8 } (M = 2H, Zn). Electron densities move from the cyan area to the purple area. Excited states with less than 30000 cm -1 and configurations which contribute more than 5% are shown (assignment: H = HOMO, L = LUMO, L+1 = LUMO+1, H-1 = HOMO-1, etc.). Q band 400-600 nm 689 nm 678 nm 498 nm 478 nm H L (83%) H L+1 (60%) H-6 L (99%) H-6 L+1 (97%) H-1 L+1 (7%) H-3 L+1 (7%) H-1 L (26%) H-3 L (10%) 684 nm 684 nm 592 nm 592 nm 485 nm 485 nm H L (79%) H-2 L+1 (16%) H-2 L+1 (79%) H L (16%) H-2 L (79%) H L+1 (16%) H-2 L+1 (79%) H L (16%) H-5 L (98%) H-5 L+1 (98%)

Table S8. Electron density difference plots of electron transitions (isovalue: 2.0 10-4 e au -3 ) for M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn). Electron densities move from the cyan area to the purple area. Excited states with less than 30000 cm -1 and configurations which contribute more than 5% are shown (assignment: H = HOMO, L = LUMO, L+1 = LUMO+1, H-1 = HOMO-1, etc.). Q band 400-600 nm 718 nm 681 nm 574 nm 546 nm 472 nm 462 nm H L (82%) H L+1 (10%) H L+1 (82%) H L (11%) H-1 L+1 (95%) H-2 L+1 (83%) H-4 L (8%) H-3 L (5%) H-4 L (69%) H-4 L+1 (13%) H-5 L (5%) H-2 L+1 (5%) 701 nm 695 nm 571 nm 523 nm 460 nm H-4 L+1 (75%) H-4 L (13%) H-5 L (5%) H L (94%) H L+1 (89%) H-1 L+1 (77%) H-3 L (48%) H-4 L (79%) H L (5%) H-2 L (20%) H-2 L+1 (39%) H-3 L+1 (11%) H L+1 (5%)

Q band 400-600 nm 729 nm 672 nm 540 nm 477 nm 468 nm H L (84%) H-3 L (8%) H L+1 (86%) H L (9%) H-2 L+1 (82%) H-4 L (16%) H-4 L (69%) H-4 L+1 (11%) H-2 L+1 (10%) H-4 L+1 (76%) H-4 L (9%) H-5 L (7%) 704 nm 690 nm 592 nm 555 nm 472 nm 462 nm H L (68%) H L+1 (26%) H L+1 (64%) H L (28%) H-2 L (97%) H-2 L+1 (92%) H-4 L (64%) H-4 L+1 (21%) H-4 L+1 (67%) H-4 L (22%) H-5 L (8%) 708 nm 679 nm 553 nm 539 nm 522 nm 468 nm H L (92%) H L+1 (94%) H-2 L (29%) H-1 L+1 (55%) H-3 L+1 (88%) H-4 L (81%) H-3 L (24%) H-2 L+1 (35%) H-4 L (6%) H-3 L+1 (5%) H-1 L+1 (23%) H-6 L+1 (5%) H-2 L+1 (15%)

Q band 400-600 nm 697 nm 695 nm 541 nm 535 nm 521 nm 456 nm 453 nm H L (93%) H L+1 (94%) H-2 L (91%) H-1 L (56%) H-3 L+1 (84%) H-4 L+1 (88%) H-4 L (85%) H-3 L (35%) H-4 L (8%) H-6 L (6%) H-3 L+1 (6%) H-2 L (6%) H-6 L+1 (6%) 727 nm 664 nm 530 nm 475 nm H L (92%) H L+1 (95%) H-2 L+1 (79%) H-4 L (76%) H-4 L (19%) H-2 L+1 (16%) 682 nm 682 nm 559 nm 559 nm 468 nm 468 nm H L (50%) H L+1 (50%) H-1 L+1 (92%) H-1 L (92%) H-4 L (89%) H-4 L+1 (89%) H L+1 (43%) H L (43%) H-1 L (6%) H-1 L+1 (6%) H-6 L+1 (6%) H-6 L (6%)

Table S9. The molecular orbital maps (isovalue: 2.0 10-4 e au -3 ) with their energy levels for MPc, M{Pc[N(C 4 H 9 ) 2 ] 8 }, and M{Pc[N(C 4 H 9 ) 2 ] 4 } (M = 2H, Zn). (assignment: H = HOMO, L = LUMO, L+1 = LUMO+1, H-1 = HOMO-1, etc.). L+1 L H H-1 H-2 H-3 H-4-3.11 ev -3.20 ev -5.19 ev -6.50 ev -3.10 ev -3.10 ev -5.15 ev -6.68 ev -2.36 ev -2.45 ev -4.25 ev -4.57 ev -4.58 Ev -4.77 ev -4.82 ev -2.37 ev -2.37 ev -4.23 ev -4.66 ev -4.67 ev -4.68 ev -4.68 ev

-2.32 ev -2.44 ev -4.17 ev -4.76 ev -4.83 ev -5.03 ev -5.23 ev -2.32 ev -2.42 ev -4.16 ev -4.77 ev -4.85 ev -4.96 ev -5.28 ev -2.35 ev -2.49 ev -4.21 ev -4.82 ev -4.88 ev -5.06 ev -5.25 ev

-2.37 ev -2.47 ev -4.21 ev -4.79 ev -4.84 ev -5.06 ev -5.27 ev -2.30 ev -2.36 ev -4.13 ev -4.82 ev -4.84 ev -4.89 ev -5.21 ev -2.22 ev -2.22 ev -4.00 ev -4.74 ev -4.77 ev -4.80 ev -5.18 ev -2.24 ev -2.37 ev -4.11 ev -4.79 ev -4.81 ev -4.89 ev -5.17 ev

-2.37 ev -2.37 ev -4.20 ev -4.86 ev -4.91 ev -4.91 ev -5.23 ev