Origin of cosmic rays

Similar documents
Revue sur le rayonnement cosmique

Acceleration and Transport of Galactic Cosmic Rays

Diffusive shock acceleration with regular electric fields

Charged Cosmic Rays and Neutrinos

Cosmic Rays, Photons and Neutrinos

Seeing the moon shadow in CRs

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

High-energy cosmic rays

Supernova Remnants and Cosmic. Rays

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Questions 1pc = 3 ly = km

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Cosmic Pevatrons in the Galaxy

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

Ultra- high energy cosmic rays

Cosmic ray escape from supernova remnants

UHECR: Acceleration and Propagation

Multi-Messenger Astonomy with Cen A?

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

Ultra High Energy Cosmic Rays: Observations and Analysis

Cosmic Rays 1. Introduction

Ultra High Energy Cosmic Rays I

Cosmic Ray Astronomy. Qingling Ni

Dr. John Kelley Radboud Universiteit, Nijmegen

Particle Acceleration at Supernova Remnants and Supernovae

Gamma ray emission from supernova remnant/molecular cloud associations

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment

Cosmic Rays in large air-shower detectors. Lecture 1: Introduction to cosmic rays Lecture 2: Current status & future

Ultrahigh Energy Cosmic Rays propagation II

Particle Acceleration in the Universe

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

GeV-TeV Galactic Cosmic Rays (GCRs)

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Ultra-High Energy AstroParticles!

An Auger Observatory View of Centaurus A

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

Measurement of the CR e+/e- ratio with ground-based instruments

Dark Matter in the Universe

UHECR: PROGRESS AND PROBLEMS

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

A few grams of matter in a bright world

The role of ionization in the shock acceleration theory

Quoi de neuf en astroparticules? Damien Dornic 22/10/07

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

Secondary particles generated in propagation neutrinos gamma rays

Open questions with ultra-high energy cosmic rays

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Mass Composition Study at the Pierre Auger Observatory

Cosmic Rays: high/low energy connections

Cosmogenic neutrinos II

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

Production of Secondary Cosmic Rays in Supernova Remnants

High energy radiation from molecular clouds (illuminated by a supernova remnant

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

From the Knee to the toes: The challenge of cosmic-ray composition

Subir Sarkar

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

VERITAS. Tel 3. Tel 4. Tel 1. Tel 2

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

Ultra High Energy Cosmic Rays. and

Particle Physics Beyond Laboratory Energies

Gamma-ray Astrophysics

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Extremely High Energy Neutrinos

Cosmic Rays in the Galaxy

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Physics and Astroparticle Physics A. A

Radio Observations of TeV and GeV emitting Supernova Remnants

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

(High-Energy) Cosmic Rays

Cosmic-ray energy spectrum around the knee

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

The Pierre Auger Observatory Status - First Results - Plans

Special Topics in Nuclear and Particle Physics

QuarkNet 2002: Cosmic Rays Anthony Shoup, UCI. Shoup 1

Cosmic Rays in large air-shower detectors

Absorption and production of high energy particles in the infrared background

Transcription:

Origin of cosmic rays Vladimir Ptuskin IZMIRAN Russia/University of Maryland USA FFP14, Marseille

Outline Introduction Voyager 1 at the edge of interstellar space Cosmic ray transport in the Galaxy Supernova remnants main Galactic accelerators Positrons in cosmic rays Structure of the knee Energy limit for galactic sources Extragalactic cosmic rays: transport and sources High energy neutrinos of cosmic origin

CR spectrum at Earth GRB AGN interacting galaxies ultrafast pulsar E -2.7 cosmic ray halo, Galactic wind cosmological shocks Fermi bubble JxE 2 10 9 ev 10 20 ev LHC extragalactic 1/km 2 /century Sun pulsar, PWN SNR WMAP haze GC stellar wind close binary Galactic disk N cr = 10-10 cm -3 - total number density in the Galaxy w cr = 1.5 ev/cm 3 - energy density E max = 3x10 20 ev - max. detected energy Q cr = 10 41 erg/s power of Galactic CR sources A 1 ~ 10-3 dipole anisotropy at 1 100 TeV r g ~ 1 E/(Z 3 10 15 ev) pc - Larmor radius at B=3x10-6 G

Voyager 1 at the edge of interstellar space launched in 1977, 70 kb, 22 w 10 3 direct measurements of interstellar CR spectra at low energies 10 2 after E. Stone 2013 particle /(m 2 sec sr MeV/nuc) 10 1 10 0 10-1 10-2 10-3 10-4 He low energies: Voyager 1 Stone et al. 2013 high energies: BESS Pamela Sparvoli et al 2012 H 10-5 10 0 10 1 10 2 10 3 10 4 10 5 energy, MeV/nuc

Golden age of new CR measurements Spacecrafts: Voyagers; ACE, Pamela, Fermi/LAT, AMS Balloons: BESS, CREAM, TRACER Cherenkov telescopes: HESS, MAGIC, VERITAS EAS detectors: KASCADE-Grande, MILAGRO, ARGO-YBJ, TUNKA, EAS-TOP, IceCube/IceTop, Auger, Telescope Array

M51 traversed matter thickness X ~ 12 g/cm 2 at 1 GeV/nuc (surface gas density of galactic disk ~ 2.5 10-3 g/cm 2 ) energy balance: ~ 15% of SN kinetic energy go to cosmic rays to maintain observed cosmic ray density Ginzburg & Syrovatskii 1964 steady state: (without energy losses and nuclear fragmentation) J cr (E)= Q cr (E) T(E) source term, SNR two power laws! E -2.1 x E -0.6 escape time from the Galaxy, 10 8 yr at 1 GeV, resonant scattering in random magnetic field 1/k res = r g

galactic wind driven by cosmic rays Ipavich 1975, Breitschwerdt et al. 1991, 1993 u inf = 500km/s R sh = 300 kpc CR scale height is larger then the scale height of thermal gas. CR pressure gradient drives the wind. + cosmic ray streaming instability with nonlinear saturation Zirakashvili et al. 1996, 2002, 2005, VP et al. 1997, 2000, D 1 1.1 s vb p p q cr Zmpc Zmpc 27 2 ~ 10 cm / s, (3 1) / 2 2.7, at 2.1 s s X s 1 2 H ef p p ~ ~ ~ D Zmpc Z 0.55

why power law? Fermi 1949, 1954 p u 2 u u p p, or - 1st or 2nd order acceleration v v 2 approximate for ( ) ( ) : Fermi formula γ =1+ τ τ a l J E p f p p -1 ; spectrum at / 1: p. a l Krymsky 1977, Bell 1978, u 2 shock u 1 diffusion diffusive shock acceleration...... a 3, u u u l 1 2 2 3 γ =1+ =2 r-1 1 at compression ratio 4 u2 r u

u sh 10 51 erg SNR shock ushr sh >10 D(p) D(р) should be anomalously small both upstream and downstream; CR streaming creates turbulence in shock precursor Bell 1978; Lagage & Cesarsky 1983 ush Emax 0.3 Ze B R c E max,ism =10 13 10 14 Z ev for B ism = 5 10-6 G Bohm limit D B =vr g /3: - condition of acceleration and confinement sh streaming instability gives B >> B ism in young SNR Bell & Lucek 2000, Bell 2004, Pelletier et al 2006; Amato & Blasi 2006; Zirakashvili & VP 2008; Vladimirov et al 2009; Gargate & Spitkovsky 2011 confirmed by X-ray observations SN 1006, Cas A, RCW 86, RX J1713.7-3946 under extreme conditions (e.g. SN1998 bw): E max ~ 10 17 ZeV, B max ~ 10-3 G

numerical simulations of particle acceleration and radiation in SNR Berezhko et al. 1994-2006, Kang & Jones 2006 Zirakashvili & VP 2012, semianalytic models Blasi et al.(2005), Ellison et al. (2010) ) Zirakashvili & VP 2012 Zirakashvili et al 2014 Cas A radio polarization in red (VLA), X-rays in green (CHANDRA), optical in blue (HST)

calculated spectrum of Galactic cosmic rays: VP, Zirakashvili, Seo 2010 JxE 2.75 solar modulation source spectra produced by SNRs protons data from HEAO 3, AMS, BESS TeV, ATIC 2, TRACER experiments 4 sn4 cp ( p)/ sn hydrodynamic eqs.+ P cr ; diffusion-convection transport eq. for CR with Alfvenic drift interstellar spectrum of all particles extragalactic component «knee» is formed at the beginning of Sedov stage 15 1/6-2/3 Eknee Z =1.1 10 Wsn,51n M ej ev data from ATIC 1/2, Sokol, JACEE, Tibet, HEGRA, Tunka, KASCADE, HiRes and Auger experiments

positrons in cosmic rays; pulsars, dark matter,... collection of data Mitchell 2013 Harding & Ramaty 1987 Ting presentation 2013

knee and beyond p,he knee 2nd knee Berezhnev et al. 2012 structure above the knee different types of nuclei, E knee ~ Z different types of SN transition to extragalactic component JxE 3 p He Fe JxE 2.7 Kampert 2013

summary by Tsunesada 2013 knee JxE 2.75 GZK suppression? E EeV r g =1 Z B μg Kpc <lna> EPOS 1.99 Kampert & Unger 2012

energy loss of ultra-high energy cosmic rays pair production p pe + e - pion production microwave & EBL photons γ γ p N π E GZK expansion GZK cutoff at E GZK ~ 6 10 19 ev Greisen 1966; Zatsepin & Kuzmin 1966 energy loss length z = 0 photodisintegration of nuclei Stecker 1969 Universe expansion - (1/E) (de/dt) adiabatic = H H 0 =100h km/(s Mpc), h=0.71

extragalactic sources of cosmic rays energy release in units 10 40 erg/(s Mpc 3 ) needed in CR SN AGN jets GRB newly born accretion on at Е > 10 19.5 ev fast pulsars galaxy clusters (< 5ms) 3 10-4 (Auger) 3 10-1 3 3 10-4 10-3 10 kin. & 6 10-2 for X/gamma rotation strong shocks 8 10-3 for E>10 9 ev L kin > 10 44 erg/s 20 1/ 2 45 AGN jets max jet fast new born pulsars B = 10 12 10 13 G E 10 Z β L /10 erg/s ev Lovelace 1976, Biermann & Strittmatter 1987, Norman et al 1995, Lemoine & Waxman 2009 19 4 E 10 Z Ω / 10 sec ev max Gunn & Ostriker 1969, Berezinsky et al. 1990, Arons 2003, Blasi et al 2000, Fang et al. 2013 2 1/2

Auger transition to heavy elements above 10 19 ev -anisotropy TA+HiRes proton dominated composition - no significant anisotropy (?) for heavy composition: E max /Z = 4 x10 18 ev easier to accelerate cosmic rays but difficult to identify their sources; production of neutrinos is suppressed (Berezinsky - disappointing model)

very high energy neutrinos of cosmic origin IceCube neutrino detector Aartsen et al. 2014 Aartsen et al. 2014 E dn/ de ν 3-year data: excess of 37 neutrinos above atmospheric background (>5.7 sigma) at 3.10 13 to 2.10 15 ev 100 TeV 1000 TeV (0.95±0.3) 10 GeV cm s sr 2-8 -2-1 -1 ν - cosmic neutrino flux per flavor with possible suppression above 2 PeV; - equal flavor ratio 1:1:1; - isotropic sky distribution

neutrino production in cosmos is possible via interactions pγ, pp(n) and decay chains + + + + π μ ν, μ e ν ν μ e μ plus neutrino oscillations _ 28 Razzaque 2013 - Galactic sources may account only for a minority of events - cosmogenic (GZK) neutrino production is inefficient - can be produced in extragalactic sources of UHE cosmic rays; not in GRB WB bound? Waxman & Bahcall 1999

some coming projects JEM-EUSO (2016, Extreme Universe Observatory, > 3 10 19 ev, 100000 km 2 from space, instantaneous aperture ~100 PAO ) sensitivity LHAASO (2013-2018, Large High Altitude Air Shower Observatory, Tibet 4300 m, gamma-rays and CRs till the knee and 1 EeV, 1 km 2 array of electron and muon detectors for gamma rays > 30 TeV, 90000 m 2 water Cherenkov detector array for gamma rays >100 GeV, 24 wide field Cherenkov telescopes and 5000 m 2 shower core detectors for CRs > 30 TeV) CTA (2018, Cherenkov Telescope Array, 100 GeV 100 TeV, 100 telescopes ( 5m to 23 m diameter); two arrays to cover full sky; 10 times better sensitivity makes about 200 SNRs visible) Tunka-HiSCORE (wide-angle Cherenkov gamma observatory, 1-100 km 2, search for PeVatrons, E cr =10 14 10 18 ev) CALET (2014, scintillation calorimeter on ISS, e+ e- up to 20 TeV) ISS-CREAM (2015, on ISS by Space-X)

Conclusions Cosmic ray origin scenario where supernova remnants serve as principle accelerators of cosmic rays in the Galaxy is strongly confirmed by recent numerical simulations. Accurate data on cosmic rays in the energy range 10 17 to 10 19 ev, where the transition from Galactic to extragalactic component occurs are becoming available. Eliminating the uncertainties with energy spectrum and composition is necessary for understanding of cosmic ray origin at the highest energies.