ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

Similar documents
ON THE GIBBS PHENOMENON FOR HARMONIC MEANS FU CHENG HSIANG. 1. Let a sequence of functions {fn(x)} converge to a function/(se)

THE POISSON TRANSFORM^)

Ht) = - {/(* + t)-f(x-t)}, e(t) = - I^-á«.

A L A BA M A L A W R E V IE W

(4) cn = f f(x)ux)dx (n = 0, 1, 2, ).

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

(3) 6(t) = /(* /(* ~ t), *(0 - /(* + 0 ~ /(* ~t)-l,

~, '" " f ' ~ (") ' ~" -~ ~ (, ~)

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

A CONVERGENCE CRITERION FOR FOURIER SERIES

THE DIFFERENCE BETWEEN CONSECUTIVE PRIME NUMBERS. IV. / = lim inf ^11-tl.

2 K cos nkx + K si" nkx) (1.1)

SOME TAÜBERIAN PROPERTIES OF HOLDER TRANSFORMATIONS AMNON JAKIMOVSKI1

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

T h e C S E T I P r o j e c t

BOLLETTINO UNIONE MATEMATICA ITALIANA

Beechwood Music Department Staff

P a g e 5 1 of R e p o r t P B 4 / 0 9

ON THE ABSOLUTE CONVERGENCE OF A SERIES ASSOCIATED WITH A FOURIER SERIES. R. MOHANTY and s. mohapatra

Mathematics Extension 1

11.8 Power Series. Recall the geometric series. (1) x n = 1+x+x 2 + +x n +

DISTRIBUTIONS FUNCTIONS OF PROBABILITY SOME THEOREMS ON CHARACTERISTIC. (1.3) +(t) = eitx df(x),

Convergence of the Logarithmic Means of Two-Dimensional Trigonometric Fourier Series

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

ALGEBRAIC PROPERTIES OF SELF-ADJOINT SYSTEMS*

MOMENT SEQUENCES AND BACKWARD EXTENSIONS OF SUBNORMAL WEIGHTED SHIFTS

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

ON APPROXIMATION TO FUNCTIONS IN THE

A New Theorem on Absolute Matrix Summability of Fourier Series. Şebnem Yildiz

CRITERIA FOR ABSOLUTE CONVERGENCE OF FOURIER SERIES

Nonnegative Solutions for a Class of Nonpositone Problems

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

THE RANGE OF A VECTOR-VALUED MEASURE

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Fourier Series. 1. Review of Linear Algebra

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

REMARKS ON INCOMPLETENESS OF {eix-*}, NON- AVERAGING SETS, AND ENTIRE FUNCTIONS1 R. M. REDHEFFER

Recursive Computation of the Repeated Integrals of the Error Function

On the uniform summability of multiple Walsh- Fourier series

ON MIXING AND PARTIAL MIXING

ON ANALYTIC CONTINUATION TO A SCHLICHT FUNCTION1 CARL H. FITZGERALD

A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS

MATH 5640: Fourier Series

Calculation of the Ramanujan t-dirichlet. By Robert Spira

ON THE BEHAVIOR OF THE SOLUTION OF THE WAVE EQUATION. 1. Introduction. = u. x 2 j

A NOTE ON ENTIRE AND MEROMORPHIC FUNCTIONS

QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS. 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA

GENERATING LARGE INDECOMPOSABLE CONTINUA

IfiW - m = J, (jt-ktl)^ ^ J, i- FTT -!

SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

SUMMABILITY OF ALTERNATING GAP SERIES

Commentationes Mathematicae Universitatis Carolinae

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

On the uniform convergence and $L$convergence of double Fourier series with respect to the Walsh-Kaczmarz system

SOME INEQUALITIES RELATED TO ABEL'S METHOD OF SUMMATION

} be a sequence of positive real numbers such that

ON THE DEGREE OF APPROXIMATION BY POSITIVE LINEAR OPERATORS USING THE B SUMMABILITY METHOD.* A.S. RANADIVE and S.P. SINGH. for n +I ::; m ::; n +p

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

NOTE ON THE HEAT EQUATION1 GARRETT BIRKHOFF AND JACK KOTIK. If u(x, t) is the temperature of an infinite insulated rod, then. J a

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

Uniform convergence of N-dimensional Walsh Fourier series

MAC 1147 Final Exam Review

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

Disjointness conditions in free products of. distributive lattices: An application of Ramsay's theorem. Harry Lakser< 1)

WAVELET MULTIPLIERS AND SIGNALS

On an operator inequality

Taylor Series and Asymptotic Expansions

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

A NOTE ON THE SINGULAR MANIFOLDS OF A DIFFERENCE POLYNOMIAL

Some Results of Compatible Mapping in Metric Spaces

SINGULAR INTEGRAL OPERATORS ON THE UNIT CIRCLE 1

TWO ERGODIC THEOREMS FOR CONVEX COMBINATIONS OF COMMUTING ISOMETRIES1 - S. A. McGRATH

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

Review Sol. of More Long Answer Questions

arxiv: v2 [math.fa] 27 Sep 2016

ON THE DIVERGENCE OF FOURIER SERIES

APPH 4200 Physics of Fluids

ON AN INEQUALITY OF KOLMOGOROV AND STEIN

GENERALIZED L2-LAPLACIANS

ON FINITE INVARIANT MEASURES FOR MARKOV OPERATORS1 M. FALKOWITZ

The Hilbert Transform and Fine Continuity

Ps(X) E PnSn x (1.2) PS (x) Po=0, and A k,n k > -I we get summablllty A, summabllity (L) and A method of summability respectively.

Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 8, No. 1/2016. The space l (X) Namita Das

This condition was introduced by Chandra [1]. Ordonez Cabrera [5] extended the notion of Cesàro uniform integrability

Transpose of the Weighted Mean Matrix on Weighted Sequence Spaces

Conditional Distributions

STEEL PIPE NIPPLE BLACK AND GALVANIZED

103 Some problems and results in elementary number theory. By P. ERDÖS in Aberdeen (Scotland). Throughout this paper c, c,... denote absolute constant

arxiv: v1 [math.pr] 4 Nov 2016

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

SOME INTEGRAL INEQUALITIES

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

u(x,t)= í /(e^wv^dí.

arxiv: v1 [math.ac] 7 Feb 2009

fl W12111 L5N

Transcription:

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA 1. Suppose that the function f(u, v) is integrable in the sense of Lebesgue, over the square ( ir, ir; it, it) and is periodic with period 27T in each variable. Let 1 <p(u, v) = <px(u, v) = [f(x + u, y + v) + f(x + u, y - v) 4 + f(x u, y + v) + f(x u, y v) A-s]. Definition. The double sequence {sm,»} is said to be summable by Harmonic means, or summable (H, 1, 1) if 1 m n c,, 1 ^ * t~-\ m l,n k lim -2-i 2-i -»,-.«,»-.«. logwlogw i=o k~0 (I + 1)(* + 1) exists. This is a particular case pn = l/(n + I) of Norlund summability of a double sequence as defined by Herriot [4], Hille and Tamarkin [5] have proved the following theorem on the Harmonic Summability of Fourier Series: Theorem A. The Fourier Series of the function f(x) is summable (H, 1) at the point x at which f' [ t 0i(O = I I 4>(u) \ du = o - where <p(t) =f(x+t)+f(x t) 2f(x). Jo 1 log An easy proof of this theorem is given by Prasad and Siddiqui [6], We shall prove the theorem: Theorem B. If furv\ i [ uv $(m, v) = I ds I cb(s, t)\ dt = o -, J o J o 11 log log u v /" I r [ u ' dl\ I <p(s, t)ds = 0 -, o IJ o 1 log u Received by the Editors October 3, 1957. 979

980 P. L. SHARMA [December /" ds\ I I /" <b(s, t)dt = 0 f - V 0 I J 0 1 log V then the double Fourier Series of function f(u, v) is summable (H, 1, 1) to the sum s at u=x and v=y. This theorem is a generalization of Theorem A for double Fourier series and also is analogous to the theorem of Chow [l] for summability (C, 1, 1) of the double Fourier series. 2. We require the following lemmas: Lemma 1. If0<t<ir, This is known [3]. then» cos (k+l)t ( 1 \ Z-kTi-< AV+*7)' Lemma 2. For all values of ra and x This is known [7]. Lemma 3. For t such that O^t^ " sin (k + l)t 1 E- =» + 1 k-o k+l 2 l/n 1» 1 sin (n - y + l/2)t I kn(t) = -E 7 - ~- = O(n) 2x log n 7=0 7+1 sin 1/2 where kn(t) is Harmonic Summability Kernel for Fourier series. Proof. I k (t) I = -2-i-;- 1 A 1 sin (n - y + l/2)t I 2t log n y=o y + 1 sin t/2 / 1 A ^_ (2n - 2y +1) sin t/2 \ \log w 7=o 7 + 1 I sin 1/2 / \ log» 7=o 7+1/ = O(ra). Lemma 4. For < sracfe /Aa/ l/wg/^5.

1958] HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES 981 Proof. i*.wi =or-^ {i+iogi//}i. U log n J 1 «1 sin(n-y+l/2)t kn(t) = ;-Z-:-;- 2x log n y=o 7+1 sm t/2 = -:-2Z -»sin (n-\-) t cos (7 + 1)/ 2ir log n sin t/2 T_0 7 + 1 I \ 2 / cos ( n H-11 sin (7 + 1)/ > 1 I / 3 \» cos (7 + 1)/ = -\ sin I n - -I / 2-7 - 2x log «sin t/2 \ \ 2 / 7=0 7+1 \w\=o\^\±c^±^\+ / 3 \» sin (7 + l)n -COs[n+-y^ -Tr-y ±^M\] Ltlogw I. 7_0 7+1 I 7=0 7+1 / J = o\--ll + log 1. by Lemma 1 and 2 Lemma 5. For t such that h^trzlir I MO I = o\-± L / log n 1. J Proof. Applying Abel's transformation, we have \kn(t)\ -ol-t W-t-T--^) L /log n 7_0 \ 7 1 7 2 / sin [(«+ 1/2) + v - 1/2]/ sin»//2 "1 [" 1 "I sin t/2 J L nt log w J -4 1- L / log w J 3. Proof of the theorem

982 P. L. SHARMA [December /IT I o Jo» X </>(«, v)km(u)kn(v)dudv I + I I + I I + I )*(«, v)km(u)kn(v)dudv 0 Jo Jo Jr Jfi Jo Jd Jr / = h + 1-2 + h + h say. where l/m<5<ir, l/n<t<ir I /* = 0 ( - ' dudv ) \ log m log «J s J r uv / = o(l) by the help of Lemma 1. Iz = \ km(u)du I <p(u, v)kn(u)dv J 5 / 0 /> TT f% Xjn /* T (%T km(u)du I 4>(u, v)kn(v)dv + I km(u)du I #(m, v)kn(u)dv = /3,i + is,2 say. By Lemmas 3, 4 and the theorem, i i r n clln\ i i I 2s,i =0- I 4>(u, v)\dv\ L log m J o J /«.» =o\-- f \<b(u,v)\ -fl + log \dv~\ L log m J i/ v log n \ v / J T 1 PT i i*l = 0- <b(u, v) L log w log w J i/» J +o - - r i *<«, v) i log dv\ L log ra log» J i/n v v J = 23,2,11 + 23,2,21 say. 1 r 1 "1T 1 rr dv~ 23,2,1 =0-;- $(M,») +-- I $(«,») _logralog»l» Ji/ log w log w J i/b ir_ = 0r ' n +.r ' f'-^-l _ log m log wj L log m log njx/n v log l/»j,<s, rlo log ^v = o(l) + o\ - L log n J i/

1958] HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES 983 T 1 TT l I!! 1 I 23,2,21=0 --;- I I <i>(u, v) log dv\ L log ra log n J X/n v v J r i r i it = 0-3>(m, v) log LlogralogwL v v J i/ 1 rt ( 11 dv\ + ---- 4>(u, v)h +log-\-\ log m log n J i/ 1 v) v'j / 1 rt *(M> v) \ = o(y) + 0[ - -^-^-dv) \logralog n J i/ d2 / / 1 rt $(«, d) 1 \ + 0( - I -^-^log d»j \logra log n J i/ u2 v / = o(-±-ft -J^-\ + 0(J^r t\ \\0gn J Un nlogl/i)/ \ log W J l/n D/ / r log log 1/iHr \ ; /flog 1/py \ \L log n Alln) \L log n J l/n/ Thus i3 =o(l). Let us evaluate Similarly ^21 =o(l). Ix. a 1 l/m *% l/n n 1/m n r n 8 p l/n a j /* T \ 0 J Jo +J JO J l/n +J J l/m J 0 +J J l/m J l/n/ ) = ii.i + 71>8 + 7i,3 + 7i,4, say. = «(D. <b(u, v)km(u)kn(v)dudv a l/m /» l/n \ I < («, t>) I &m(w) kn(v) <2w<2» 1 a l/m <» l/n \ I <^)(m, j;) mndudv 1 Ul/m. r -i radw I </>(«, v)kn(v)dv = 0 I < (w, v)kn(v)dv L / l/n = o(l) as 23,2.

984 P. L. SHARMA [December Thus 7"i 2 =o(l). Similarly 7ii8 =o(l). I\a = I I 4>(u, v)km(u)k (v)dudv. J l/m J I In \li.i\=o\f f \<j>(u,v)\--ji + log-1-- LJi/mJi/n ulogm \ u)v\ogn r rs ct i i l l i = 0 I I I <b(u, v) -dudv LJi/mJi/n ulogm v log n J \l + log > dudv r f5 CT i i * l 1 1 + 01 4>(u, v) -log-dudv LJi/mJi/n ulogm u v log n J + 0 If { < («, v) I -log dudv LJiimJi/n ulogm v log n v J r r8 rri 1 * * * 1 + 0 I I 0(«,») I -log-log dudv LJi/mJi/n ulogm u v log n v J = 7i,4,i I + 7l,4,2 + I 774,3 I + I 7i,4,4 I. 1 1 r cs l ct \*(#'*)I I Ii,i,\ 1=0 I - du I -dv LJi/mU log m J un v logn = 0\ r l*(u'v)l dv] L log n J 1/n v J = o(l) by the help of 73,2,i. [/" 1 rs.. 1 1 "I I /i,4,21=0 I -dv I I <b(u, v) I -log du \_J i/n v log n J i/m u log m u J r 1 rs,, l 1 " = 0 - I I <b(u, v) \ log du L log m J l/m u u A I In,z\ = o(l) by h,t,t- = o(l) as I /1.4.2jr rs rt1 1 1 l 1 * T/i.4.4 =0 I I <*>(«,») I -log-log dudv. L J i/m J i/n ulogm u v log n v J By partial integration for double integral we have [2],

1958] HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES 985 1 11 1 Ho, r) -log -log 5 log ra 5 5 log n 5 1 1 r 8 1 - log l/u -log f 4>(m, r)-du t log n r J i/m u2 log ra 1 1 rt 1 log 1/s -.-logy *(«,») 7j-* 5 log ra 5 J i/n t> log w, f' f7^/, (1 - log 1/«)(1 - log 1/b) + I I $(m,!)) - flmfll) J i/m J i/n wv log ra log w = Lx + L2 + 73 + Li. Lx a,s i \ / rr log i/m \ 4>(m, t)-du) + ol I < >(m, t)-<2m ) l/m M2 log ra / \Jl/, M2 / = o(l) by 73,2,i and 73,2,2-2,3 = o(l) as in 72. /'5 r T *(w, v)dudv i/m J i/n uvlogmlogn /'8 rt $(u,v) log (l/u)dudv J'6 /'5 l/m / l/n «V log ra log W i/m J i/n i/m J i/n rt < («,») log (\/v)dudv uvlogmlogn rt $(w,») log (I/m) log (l/v)dudv uvlogmlogn = 74,1 + 74,2 + 74,3 + 74,4. z,i = 0(fs-^r-^\ \ J l/m M log 1/M J l/n n log 1/d/ a'6 /" 1 1 l \ i/m J i/n u v log 1/h log ra log w / a'5 <2«/*t (2m\ = 0(1). i/m u log ra J l/ u log l/»/

986 P. L. SHARMA Similarly 4,3 = 0(1). a,s du rr dv Um ulogm J i/n v log n Thus the proof is complete. I am much indebted to Dr. M. L. Misra for his kind help and guidance in the preparation of this paper. References 1. Y. S. Chow, On the cesaro summability of double Fourier series, Tohoku Math. J. vol. 5 (1953) pp. 277-283. 2. J. J. Gergen, Convergence criteria for double Fourier series, Trans. Amer. Math. Soc. vol. 35 (1933) pp. 29-63. 3. Hardy and Rogosinki, Proc. Cambridge Philos. Soc. vol. 43 (1947) pp. 10-25. 4. J. G. Herriot, The Nbrlund summability of double Fourier series, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 72-94. 5. Hille and Tamarkin, On the summability of Fourier series, Trans. Amer. Math. Soc. vol. 34 (1932) pp. 757-783. 6. B. N. Prasad and Siddiqui, Harmonic summability of Fourier series, Proc. Indian Acad. Sci. vol. 28 (1948) pp. 527-531. 7. E. C. Titchmarsh, Theory of functions, p. 40. University of Saugar, Sagar, India