the Unitary Polar Factor æ Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 94720

Similar documents
the Unitary Polar Factor æ Ren-Cang Li P.O. Box 2008, Bldg 6012

Department of Mathematics Technical Report May 2000 ABSTRACT. for any matrix norm that is reduced by a pinching. In addition to known

We first repeat some well known facts about condition numbers for normwise and componentwise perturbations. Consider the matrix

Linear Algebra Review. Vectors

Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract

MULTIPLICATIVE PERTURBATION ANALYSIS FOR QR FACTORIZATIONS. Xiao-Wen Chang. Ren-Cang Li. (Communicated by Wenyu Sun)

Multiplicative Perturbation Analysis for QR Factorizations

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

For δa E, this motivates the definition of the Bauer-Skeel condition number ([2], [3], [14], [15])

arxiv: v1 [math.na] 1 Sep 2018

S.F. Xu (Department of Mathematics, Peking University, Beijing)

Linear Algebra (Review) Volker Tresp 2018

On condition numbers for the canonical generalized polar decompostion of real matrices

Computational math: Assignment 1

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY

Multivariate Statistical Analysis

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

The skew-symmetric orthogonal solutions of the matrix equation AX = B

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

1 Linear Algebra Problems

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x)

Institute for Advanced Computer Studies. Department of Computer Science. On the Perturbation of. LU and Cholesky Factors. G. W.

Some inequalities for sum and product of positive semide nite matrices

then kaxk 1 = j a ij x j j ja ij jjx j j: Changing the order of summation, we can separate the summands, kaxk 1 ja ij jjx j j: let then c = max 1jn ja

arxiv: v3 [math.ra] 22 Aug 2014

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection

Componentwise perturbation analysis for matrix inversion or the solution of linear systems leads to the Bauer-Skeel condition number ([2], [13])

2 and bound the error in the ith eigenvector in terms of the relative gap, min j6=i j i? jj j i j j 1=2 : In general, this theory usually restricts H

18.06 Professor Edelman Quiz 3 December 5, 2011

A Note on Eigenvalues of Perturbed Hermitian Matrices

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

On the Perturbation of the Q-factor of the QR Factorization

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Singular Value Decompsition

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col

A fast randomized algorithm for overdetermined linear least-squares regression

Notes on Eigenvalues, Singular Values and QR

The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B

Key words. multiplicative perturbation, relative perturbation theory, relative distance, eigenvalue, singular value, graded matrix

The Kalman filter is arguably one of the most notable algorithms

1. The Polar Decomposition

Matrix-Product-States/ Tensor-Trains

Review of Linear Algebra

The Singular Value Decomposition

Matrix decompositions

Distribution for the Standard Eigenvalues of Quaternion Matrices

Norms and Perturbation theory for linear systems

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Institute for Advanced Computer Studies. Department of Computer Science. On the Adjoint Matrix. G. W. Stewart y ABSTRACT

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

Linear Algebra (Review) Volker Tresp 2017

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR

Research Article Completing a 2 2Block Matrix of Real Quaternions with a Partial Specified Inverse

Review of Vectors and Matrices

Total least squares. Gérard MEURANT. October, 2008

Two Results About The Matrix Exponential

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers.

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models

MATH36001 Generalized Inverses and the SVD 2015

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2

Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II)

Large Scale Data Analysis Using Deep Learning

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart.

Homework 9. Ha Pham. December 6, 2008

Review of Basic Concepts in Linear Algebra

Linear Algebra: Characteristic Value Problem

Matrix Energy. 1 Graph Energy. Christi DiStefano Gary Davis CSUMS University of Massachusetts at Dartmouth. December 16,

Jeffrey D. Ullman Stanford University

APPROXIMATING THE COMPLEXITY MEASURE OF. Levent Tuncel. November 10, C&O Research Report: 98{51. Abstract

Linear Algebra, 4th day, Thursday 7/1/04 REU Info:

Introduction to Numerical Linear Algebra II

The Matrix Sign Function Method and the. Computation of Invariant Subspaces. November Abstract

Chapter 3 Transformations

Theorem A.1. If A is any nonzero m x n matrix, then A is equivalent to a partitioned matrix of the form. k k n-k. m-k k m-k n-k

Block Lanczos Tridiagonalization of Complex Symmetric Matrices

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

Banach Journal of Mathematical Analysis ISSN: (electronic)

A Note on Simple Nonzero Finite Generalized Singular Values

Some Notes on Least Squares, QR-factorization, SVD and Fitting

Linear Least Squares. Using SVD Decomposition.

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.)

On the Skeel condition number, growth factor and pivoting strategies for Gaussian elimination

Research Article Constrained Solutions of a System of Matrix Equations

Some bounds for the spectral radius of the Hadamard product of matrices

Lecture notes: Applied linear algebra Part 1. Version 2

Decomposition of Quantum Gates

The Singular Value Decomposition

A New Method for Solving General Dual Fuzzy Linear Systems

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n

Structured Condition Numbers of Symmetric Algebraic Riccati Equations

deviation of D and D from similarity (Theorem 6.). The bound is tight when the perturbation is a similarity transformation D = D? or when ^ = 0. From

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y.

Introduction to Linear Algebra. Tyrone L. Vincent

JACOBI S ITERATION METHOD

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2

5. Orthogonal matrices

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.

Transcription:

Relative Perturbation Bounds for the Unitary Polar Factor Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 9470 èli@math.berkeley.eduè July 5, 994 Computer Science Division Technical Report UCBèèCSD-94-854, University of California, Berkeley, CA 9470, December, 994. Abstract Let B be an m n èm nè complex matrix. It is known that there is a unique polar decomposition B = QH, where Q Q = I, the n n identity matrix, and H is positive denite, provided B has full column rank. This paper addresses the following question: how much may Q change if B is perturbed to e B = D BD? Here D and D are two nonsingular matrices and close to the identities of suitable dimensions. Known perturbation bounds for complex matrices indicate that in the worst case, the change in Q is proportional to the reciprocal of the smallest singular value of B. In this paper, we will prove that for the above mentioned perturbations to B, the change in Q is bounded only by the distances from D and D to identities! As an application, we will consider perturbations for one-side scaling, i.e., the case when G = D B is perturbed to e G = D e B, where D is usually a nonsingular diagonal scaling matrix but for our purpose we do not have to assume this, and B and e B are nonsingular. This material is based in part upon work supported by Argonne National Laboratory under grant No. 05540 and the University of Tennessee through the Advanced Research Projects Agency under contract No. DAAL03-9-C-0047, by the National Science Foundation under grant No. ASC-9005933, and by the National Science Infrastructure grants No. CDA-87788 and CDA-94056.

Let B be an m n èm nè complex matrix. It is known that there are Q with orthonormal column vectors, i.e., Q Q = I, and a unique positive semidenite H such that B = QH: èè Hereafter I denotes an identity matrix with appropriate dimensions which should be clear from the context or specied. The decomposition èè is called the polar decomposition of B. If, in addition, B has full column rank then Q is uniquely determined also. In fact, H =èb Bè = ; Q = BèB Bè,= ; èè where superscript ë " denotes conjugate transpose. The decomposition èè can also be computed from the singular value decomposition èsvdè B = UV by H = V V ; Q = U V ; è3è è! where U =èu ;U è and V are unitary, U is m n, = and 0 = diag è ;:::; n è is nonnegative. There are many published bounds upon how much the two factor matrices Q and H may change if entries of B are perturbed in arbitrary manner ë,, 3,4,6,5,7,8,9ë. In these papers, no assumption was made on how B was perturbed unlike what we are going to do here. In this paper, we obtain some bounds for the perturbations of Q, assuming B is complex and is perturbed to B e = D BD, where D and D are two nonsingular matrices and close to the identities of suitable dimensions. Assume also B has full column rank and so do B e = D BD. Let B = QH; e B = e Q e H è4è be the polar decompositions of B and e B respectively, and let B = UV ; e B = e U e e V è5è be the SVDs of B and B, e respectively, where U e =èu e ; U e è, U e! is m n, and e e =è and e = diag èe 0 ;:::;e n è. Assume as usual that n é 0; and e e n é 0: è6è

It follows from èè and è5è that Q = U V ; e Q = e U e V : In what follows, kxk F denotes the Frobenius norm which is the square root of the trace of X X. Then eu è e B, BèV = e e V V, e U U; eu è e B, BèV = e U èd BD, D B + D B, BèV and similarly = e U h ebèi, D, è+èd, IèB i V = e e V èi, D, èv + e U èd, IèU; U è e B, Bè e V = U e U e, V e V; U è e B, Bè e V = U èd BD, BD + BD, Bèe V = U hèi, D, è e B + BèD, Iè i e V = U èi, D, è e U e +V èd, Ièe V: Therefore, we obtained two perturbation equations. ee V V, U e U = e V e èi, D, èv + U e èd, IèU; è7è U e U e, V V e = U èi, D, è e U+V e èd, Ièe V: è8è The rst n rows of the equation è7è yields e e V V, e U U = e e V èi, D, èv + e U èd, IèU : è9è The rst n rows of the equation è8è yields U e U e, V e V = U èi, D, è e U e + V èd, Ièe V; on taking conjugate transpose of which, one has e e U U, e V V = e e U èi, D, èu + e V èd, IèV : è0è Now subtracting è0è from è9è leads to e è e U U, e V V è+èe U U, e V V è èè = e h eu èi, D, èu, e V èi, D, èv i + h ev èd, IèV, e U èd, IèU i : 3

Set X = e U U, e V V =èx ij è; èè E = e U èi, D, èu, e V èi, D, èv =èe ijè; è3è ee = e V èd, IèV, e U èd, IèU =èe ij è: è4è Then the equation èè reads e X+X = e E+ e E, or componentwisely, e i x ij + x ij j = e i e ij + e ij j.thus q q jèe i + j èx ij j e + i je j ij j + je ij j è jx ij j e i + j èe i + j è èje ijj + je ij j è je ij j + je ij j : Summing on i and j for i; j =; ; ;n produces Notice that and Lemma kxk F = nx i; j= jx ij j kek F + k e Ek F : X = e U U, e V V = e V èe V e U U V, IèV = e V è e Q Q, IèV; è kxk F = k e Q Q, Ik F ; k e Q Q, Ik F kek F ki, D, k F + ki, D, k F; k e EkF kd, Ik F + kd, Ik F : è5è r ki, D, k F + ki, D, k F +èkd, Ik F + kd, Ik Fè : When m = n, both Q and e Q are unitary. Thus k e Q Q, Ik F = kq, e QkF, and Lemma yields Theorem Let B and B e = D BD be two n n nonsingular complex matrices whose polar decompositions are given by è4è. Then kq, e QkF r ki, D, k F + ki, D, k F +èkd, Ik F + kd, Ik F è è6è p q ki, D, k + ki, D, F k F + kd, Ik F + kd, Ik F : 4

If, however, m é n, then it follows from the last m, n rows of the equations è7è and è8è that eu U = e U èd, IèU and U e U e = U èi, D, è e U e : Since we assume that both B and e B have full column rank, both and e are nonsingular diagonal matrices. So Therefore, we have eu U = U e èd, IèU and U e U = U èi, D, è e U : k e U U k F kd, Ik F and ku e U k F = ki, D, k F: è7è Notice that èu V ;U è=èq; U è and èe UV e ; U e è=èe Q; U e è are unitary. Hence U Q =0= U e e Q and è! kq, QkF e = kèq; U è èq, QèkF e I, Q e = Q,U e Q F q ki, Q e Qk F + k,u e U V e k F q ki, Q e Qk F + ku e U k F q, ki, D, k F + ki, D, k F +èkd, Ik F + kd, Ik F è + ki, D, Similarly, wehave k F : è! kq, QkF e = kè Q; e U e è èq, QèkF e eq = Q, I eu Q F q, ki, D, k F + ki, D, F k +èkd, Ik F + kd, Ik F è + kd, Ik F : Theorem below follows from è8è and è9è. Theorem Let A and A e be two m n èm énè complex matrices having full column rank and with the polar decompositions è4è. Then kq, e QkF ki, D, k F + ki, D, k F n +èki, D k F + ki, D k F è + min ki, D, k F ; ki, D k F p 3 q ki, D k F + ki, D, k F + ki, D k + ki, D, F k F : oi è8è è9è 5

Now we are in the position to apply Theorem to perturbations for oneside scaling èfrom the leftè. Here we consider two n n nonsingular matrices G = D B and e G = D e B, where D is a scaling matrix and usually diagonal èbut this is not necessary to the theorem that followsè. B is nonsingular and usually better conditioned than G itself. Set B def = B e, B: eb is also nonsingular by the condition kbk kb, k assumed henceforth. Notice that é which will be eg = D e B = D èb +Bè =D BèI + B, èbèè = GèI + B, èbèè: So applying Theorem with D = 0 and D = I + B, èbè leads to Theorem 3 Let G = D B and e G = D e B be two nn nonsingular matrices, and let G = QH and e G = e Q e H be their polar decompositions. Set B def = B e, B. IfkBk kb, k é then kq, e QkF r kb, èbèk F + I, èi + B, èbèè, F s + è,kb, k kbk è kb, k kbk F : One can deal with one-side scaling from the right in the similar way. Acknowledgement: I thank Professor W. Kahan for his supervision and Professor J. Demmel for valuable discussions. References ëë A. Barrlund. Perturbation bounds on the polar decomposition. BIT, 30:0í3, 990. ëë C.-H. Chen and J.-G. Sun. Perturbation bounds for the polar factors. J. Comp. Math., 7:397í40, 989. ë3ë N. J. Higham. Computing the polar decompositioníwith applications. SIAM Journal on Scientic and Statistical Computing, 7:60í74, 986. 6

ë4ë C. Kenney and A. J. Laub. Polar decompostion and matrix sign function condition estimates. SIAM Journal on Scientic and Statistical Computing, :488í504, 99. ë5ë R.-C. Li. New perturbation bounds for the unitary polar factor. Manuscript submitted to SIAM J. Matrix Anal. Appl., 993. ë6ë R.-C. Li. A perturbation bound for the generalized polar decomposition. BIT, 33:304í308, 993. ë7ë J.-Q. Mao. The perturbation analysis of the product of singular vector matrices uv h. J. Comp. Math., 4:45í48, 986. ë8ë R. Mathias. Perturbation bounds for the polar decomposition. SIAM J. Matrix Anal. Appl., 4:588í597, 993. ë9ë J.-G. Sun and C.-H. Chen. Generalized polar decomposition. Math. Numer. Sinica, :6í73, 989. In Chinese. 7